Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
D → P(π, K) helicity form factors within light-cone sum rule approach *
Hai-Bing Fu; Wei Cheng; Rui-Yu Zhou; Long Zeng
<jats:title>Abstract</jats:title> <jats:p>In this study, <jats:inline-formula> <jats:tex-math><?CDATA $D\to P(\pi, K)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> helicity form factors (HFFs) are investigated by applying the QCD light-cone sum rule (LCSR) approach. The calculation accuracy is up to the next-to-leading order (NLO) gluon radiation correction of twist-(2,3) distribution amplitude. The resultant HFFs at a large recoil point are <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{P}}_{t,0}^\pi(0) = 0.688^{+0.020}_{-0.024}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{P}}_{t,0}^K(0)=0.780^{+0.024}_{-0.029}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, in which the contributions from the three particles of the leading order (LO) are so small that they can be safely neglected. The maximal contribution of the NLO gluon radiation correction for <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{P}}_{t,0}^{\pi,K}(0)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> is less than 3%. After extrapolating the LCSR predictions for these HFFs to the whole <jats:inline-formula> <jats:tex-math><?CDATA $q^2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M5.jpg" xlink:type="simple" /> </jats:inline-formula>-region, we obtain the decay widths for semileptonic decay processes <jats:inline-formula> <jats:tex-math><?CDATA $D\to P\ell\nu_\ell$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, which are consistent with the BES-III collaboration predictions within error limits. After considering the <jats:inline-formula> <jats:tex-math><?CDATA $D^{+}/D^{0}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M7.jpg" xlink:type="simple" /> </jats:inline-formula>-meson lifetime, we give the branching fractions of <jats:inline-formula> <jats:tex-math><?CDATA $D\to P\ell\nu_\ell$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M8.jpg" xlink:type="simple" /> </jats:inline-formula> with <jats:inline-formula> <jats:tex-math><?CDATA $\ell = e, \mu$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M9.jpg" xlink:type="simple" /> </jats:inline-formula>; our predictions also agree with the BES-III collaboration results within error limits, especially for the <jats:inline-formula> <jats:tex-math><?CDATA $D\to \pi \ell\nu_\ell$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M10.jpg" xlink:type="simple" /> </jats:inline-formula> decay process. Finally, we present the forward-backward asymmetry <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{A}}_{\rm{FB}}^\ell(q^2)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M11.jpg" xlink:type="simple" /> </jats:inline-formula> and lepton convexity parameter <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{C}}_F^\ell(q^2)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, and further calculate the mean value of these two observations, <jats:inline-formula> <jats:tex-math><?CDATA $\langle{\cal{A}}_{\rm{FB}}^\ell\rangle$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M13.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\langle{\cal{C}}_F^\ell\rangle$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113103_M14.jpg" xlink:type="simple" /> </jats:inline-formula>, which may provide a way to test those HFFs in future experiments. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 113103
Revisiting nonfactorizable contributions to factorization-forbidden decays of B mesons to charmonium *
Ya-Qian Li; Meng-Kun Jia; Rui Zhou
<jats:title>Abstract</jats:title> <jats:p>Motivated by the large rates of <jats:inline-formula> <jats:tex-math><?CDATA $B\rightarrow (\chi_{c0}, \chi_{c2}, h_c)K$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113104_M1.jpg" xlink:type="simple" /> </jats:inline-formula> decays observed by the <jats:inline-formula> <jats:tex-math><?CDATA $BABAR$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113104_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and Belle collaborations, we investigate the nonfactorizable contributions to these factorization-forbidden decays, which can occur through a gluon exchange between the <jats:inline-formula> <jats:tex-math><?CDATA $c\bar c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> system and the spectator quark. Our numerical results demonstrate that the spectator contributions are capable of producing a large branching ratio consistent with the experiments. As a by-product, we also study the Cabibbo-suppressed decays, such as <jats:inline-formula> <jats:tex-math><?CDATA $B\rightarrow (\chi_{c0}, \chi_{c2}, h_c)\pi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and the U-spin-related <jats:inline-formula> <jats:tex-math><?CDATA $B_s$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> decay, which have so far received less theoretical and experimental attention. The calculated branching ratios reach the order of <jats:inline-formula> <jats:tex-math><?CDATA $10^{-6}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113104_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, which is within the scope of the Belle-II and LHCb experiments. Further, the <jats:inline-formula> <jats:tex-math><?CDATA $CP$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113104_M7.jpg" xlink:type="simple" /> </jats:inline-formula>-asymmetry parameters are also calculated for these decays. The obtained results are compared with the available experimental data and numbers from other predictions. We also investigate the sources of theoretical uncertainties in our calculation. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 113104
Dark matter search at colliders and neutrino floor *
Qing-Hong Cao; An-Kang Wei; Qian-Fei Xiang
<jats:title>Abstract</jats:title> <jats:p>The sensitivity of the direct detection of dark matter (DM) approaches the so-called neutrino floor, below which it is difficult to disentangle the DM candidate from the neutrino background. In this work, we consider the scenario that no DM signals are reported in various DM direct detection experiments and explore whether collider searches could probe DM below the neutrino floor. We adopt several simplified models in which the DM candidate couples to electroweak gauge bosons or leptons in the standard model only through high-dimensional operators. After including the RGE running effect, we investigate the constraints of direct detection, indirect detection, and collider searches. The collider search can probe light DM below the neutrino floor. Particularly, for the effective interaction of <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{\chi}\chi B_{\mu\nu}B^{\mu\nu}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113105_Mi.jpg" xlink:type="simple" /> </jats:inline-formula>, current data from the mono-photon channel at the 13 TeV LHC has already covered the entire parameter space of the neutrino floor. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 113105
Tetraquark candidates in LHCb's di-J/ψ mass spectrum *
Zhi-Gang Wang
<jats:title>Abstract</jats:title> <jats:p>In this article, we study the first radial excited states of the scalar, axialvector, vector, and tensor diquark-antidiquark-type <jats:inline-formula> <jats:tex-math><?CDATA $cc\bar{c}\bar{c}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113106_M1.jpg" xlink:type="simple" /> </jats:inline-formula> tetraquark states with the QCD sum rules and obtain the masses and pole residues; then, we use the Regge trajectories to obtain the masses of the second radial excited states. The predicted masses support assigning the broad structure from 6.2 to 6.8 GeV in the di- <jats:inline-formula> <jats:tex-math><?CDATA $J/\psi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113106_M2.jpg" xlink:type="simple" /> </jats:inline-formula> mass spectrum to be the first radial excited state of the scalar, axialvector, vector, or tensor <jats:inline-formula> <jats:tex-math><?CDATA $cc\bar{c}\bar{c}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113106_M3.jpg" xlink:type="simple" /> </jats:inline-formula> tetraquark state, as well as assigning the narrow structure at about 6.9 GeV in the di- <jats:inline-formula> <jats:tex-math><?CDATA $J/\psi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113106_M4.jpg" xlink:type="simple" /> </jats:inline-formula> mass spectrum to be the second radial excited state of the scalar or axialvector <jats:inline-formula> <jats:tex-math><?CDATA $cc\bar{c}\bar{c}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113106_M5.jpg" xlink:type="simple" /> </jats:inline-formula> tetraquark state. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 113106
Yield ratio of hypertriton to light nuclei in heavy-ion collisions from = 4.9 GeV to 2.76 TeV *
Tian-Hao Shao; Jin-Hui Chen; Che Ming Ko; Kai-Jia Sun; Zhang-Bu Xu
<jats:title>Abstract</jats:title> <jats:p>We argue that the difference in the yield ratio <jats:inline-formula> <jats:tex-math><?CDATA ${{{S}}_{\rm{3}}} = \dfrac{{{{{N}}_{_\Lambda ^3{\rm{H}}}}/{{{N}}_\Lambda }}}{{{{{N}}_{^3{\rm{He}}}}/{{{N}}_{{p}}}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> measured in Au+Au collisions at <jats:inline-formula> <jats:tex-math><?CDATA $\rm \sqrt{s_{NN}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> = 200 GeV and in Pb-Pb collisions at <jats:inline-formula> <jats:tex-math><?CDATA $\rm \sqrt{s_{NN}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> = 2.76 TeV is mainly owing to the different treatment of the weak decay contribution to the proton yield in the Au+Au collisions at <jats:inline-formula> <jats:tex-math><?CDATA $\rm \sqrt{s_{NN}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> = 200 GeV. We then use the coalescence model to extract from measured <jats:inline-formula> <jats:tex-math><?CDATA $\rm S_3$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114001_M6.jpg" xlink:type="simple" /> </jats:inline-formula> the information about the <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114001_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and nucleon density fluctuations at the kinetic freeze-out of heavy-ion collisions. We also show, using available experimental data, that the yield ratio <jats:inline-formula> <jats:tex-math><?CDATA ${{{S}}_{\rm{2}}} = \dfrac{{{{{N}}_{_\Lambda ^3{\rm{H}}}}}}{{{{{N}}_\Lambda }{{{N}}_{{d}}}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114001_M8.jpg" xlink:type="simple" /> </jats:inline-formula> is a more promising observable than <jats:inline-formula> <jats:tex-math><?CDATA $\rm S_3$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114001_M9.jpg" xlink:type="simple" /> </jats:inline-formula> for probing the local baryon-strangeness correlation in the produced medium. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114001
Cross-sections for , and reactions on molybdenum isotopes in the neutron energy range of 13 to 15 MeV *
Junhua Luo; Li Jiang
<jats:title>Abstract</jats:title> <jats:p>Given the insufficient cross-sectional data regarding the 14-MeV-neutron experiment of molybdenum, the vital fusion reactor structural material, and the significant heterogeneities among the reported values, this study examined the (<jats:italic>n</jats:italic>,2<jats:italic>n</jats:italic>), (<jats:italic>n</jats:italic>,α), (<jats:italic>n</jats:italic>,<jats:italic>p</jats:italic>), (<jats:italic>n</jats:italic>,<jats:italic>d</jats:italic>), and (<jats:italic>n</jats:italic>,<jats:italic>t</jats:italic>) reaction cross sections in molybdenum isotopes based on the neutrons produced via a T(<jats:italic>d</jats:italic>,<jats:italic>n</jats:italic>)<jats:sup>4</jats:sup>He reaction carried out in the Pd-300 Neutron Generator at the China Academy of Engineering Physics (CAEP). A high-resolution gamma-ray spectrometer, which was equipped with a coaxial high-purity germanium detector, was used to measure the product nuclear gamma activities. In addition, <jats:sup>27</jats:sup>Al(<jats:italic>n</jats:italic>,α)<jats:sup>24</jats:sup>Na and <jats:sup>93</jats:sup>Nb(<jats:italic>n</jats:italic>,2<jats:italic>n</jats:italic>)<jats:sup>92m</jats:sup>Nb reactions were utilized as the neutron fluence standards. The experimental <jats:sup>92</jats:sup>Mo(<jats:italic>n</jats:italic>,2<jats:italic>n</jats:italic>)<jats:sup>91</jats:sup>Mo, <jats:sup>94</jats:sup>Mo(<jats:italic>n</jats:italic>,2<jats:italic>n</jats:italic>)<jats:sup>93m</jats:sup>Mo, <jats:sup>100</jats:sup>Mo(<jats:italic>n</jats:italic>,2<jats:italic>n</jats:italic>)<jats:sup>99</jats:sup>Mo, <jats:sup>98</jats:sup>Mo(<jats:italic>n</jats:italic>,α)<jats:sup>95</jats:sup>Zr, <jats:sup>100</jats:sup>Mo(<jats:italic>n</jats:italic>,α)<jats:sup>97</jats:sup>Zr, <jats:sup>92</jats:sup>Mo(<jats:italic>n</jats:italic>,<jats:italic>p</jats:italic>)<jats:sup>92m</jats:sup>Nb, <jats:sup>96</jats:sup>Mo(<jats:italic>n</jats:italic>,<jats:italic>p</jats:italic>)<jats:sup>96</jats:sup>Nb, <jats:sup>97</jats:sup>Mo(<jats:italic>n</jats:italic>,<jats:italic>p</jats:italic>)<jats:sup>97</jats:sup>Nb, <jats:sup>98</jats:sup>Mo(<jats:italic>n</jats:italic>,<jats:italic>p</jats:italic>)<jats:sup>98m</jats:sup>Nb, <jats:sup>92</jats:sup>Mo(<jats:italic>n</jats:italic>,<jats:italic>d</jats:italic>)<jats:sup>91m</jats:sup>Nb, and <jats:sup>92</jats:sup>Mo(<jats:italic>n</jats:italic>,<jats:italic>t</jats:italic>)<jats:sup>90</jats:sup>Nb reaction cross sections were acquired within the 13–15 MeV neutron energy range. Thereafter, we compared and analyzed these obtained cross sections based on the existing IAEA-EXFOR database-derived experimental data, together with evaluation results corresponding to ENDF/B-VIII.0, JEFF-3.3, BROND-3.1, and CENDL-3.1 and the theoretical outcomes acquired through TALYS-1.95 and EMPIRE-3.2.3 (nuclear-reaction modeling tools). </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114002
Decay properties of the Zc(3900) through the Fierz rearrangement *
Hua-Xing Chen
<jats:title>Abstract</jats:title> <jats:p>We systematically construct all the tetraquark currents/operators of <jats:italic>J<jats:sup>PC</jats:sup> </jats:italic> = 1<jats:sup>+-</jats:sup> with the quark configurations <jats:inline-formula> <jats:tex-math><?CDATA $[cq][\bar c \bar q]$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114003_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $[\bar c q][\bar q c]$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114003_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $[\bar c c][\bar q q]$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114003_M5.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $q=u/d$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114003_M6.jpg" xlink:type="simple" /> </jats:inline-formula>), and derive their relations through the Fierz rearrangement of the Dirac and color indices. Using the transformations of <jats:inline-formula> <jats:tex-math><?CDATA $[qc][\bar q \bar c] \to [\bar c c][\bar q q]$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114003_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $[\bar c q][\bar q c]$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114003_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, we study decay properties of the <jats:inline-formula> <jats:tex-math><?CDATA $Z_c(3900)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114003_M9.jpg" xlink:type="simple" /> </jats:inline-formula> as a compact tetraquark state; while using the transformation of <jats:inline-formula> <jats:tex-math><?CDATA $[\bar c q][\bar q c] \to [\bar c c][\bar q q]$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114003_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, we study its decay properties as a hadronic molecular state. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114003
Heavy flavor quenching and flow: the roles of initial condition, pre-equilibrium evolution, and in-medium interaction *
Shu-Qing Li; Wen-Jing Xing; Feng-Lei Liu; Shanshan Cao; Guang-You Qin
<jats:title>Abstract</jats:title> <jats:p>Within an advanced Langevin-hydrodynamics framework coupled to a hybrid fragmentation-coalescence hadronization model, we study heavy flavor quenching and flow in relativistic heavy-ion collisions. We investigate how the initial heavy quark spectrum, the in-medium energy loss and hadronization mechanisms of heavy quarks, the evolution profile of the pre-equilibrium stage, the medium flow, and the temperature dependence of heavy quark diffusion coefficients influence the suppression and elliptic flow of heavy mesons at the RHIC and the LHC. Our results show that the different modeling of initial conditions, pre-equilibrium evolution, and in-medium interactions can individually yield uncertainties of approximately 10-40% in <jats:italic>D</jats:italic> meson suppression and flow at a low transverse momentum. We also find that proper combinations of collisional versus radiative energy loss, coalescence versus fragmentation in hadronization, and the inclusion of medium flow are the most important factors for describing the suppression and elliptic flow of heavy mesons. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114101
Cross-section measurements for 58,60,61Ni(n, α)55,57,58Fe reactions in the 4.50 – 5.50 MeV neutron energy region *
Haoyu Jiang; Zengqi Cui; Yiwei Hu; Jie Liu; Jinxiang Chen; Guohui Zhang; Yu. M. Gledenov; E. Sansarbayar; G. Khuukhenkhuu; L. Krupa; I. Chuprakov
<jats:title>Abstract</jats:title> <jats:p>The cross sections at 5 energy points of the <jats:sup>58</jats:sup>Ni(<jats:italic>n</jats:italic>, <jats:italic>α</jats:italic>)<jats:sup>55</jats:sup>Fe reaction were measured in the 4.50 MeV ≤ <jats:italic>E</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub> ≤ 5.50 MeV region while those for the <jats:sup>60</jats:sup>Ni(<jats:italic>n</jats:italic>, <jats:italic>α</jats:italic>)<jats:sup>57</jats:sup>Fe and <jats:sup>61</jats:sup>Ni(<jats:italic>n</jats:italic>, <jats:italic>α</jats:italic>)<jats:sup>58</jats:sup>Fe reactions were measured at <jats:italic>E</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub> = 5.00 and 5.50 MeV using the 4.5 MV Van de Graaff accelerator at Peking University. A gridded twin ionization chamber (GIC) was used as the detector, and enriched <jats:sup>58</jats:sup>Ni, <jats:sup>60</jats:sup>Ni, and <jats:sup>61</jats:sup>Ni foil samples were prepared and mounted at the sample changer of the GIC. Three highly enriched <jats:sup>238</jats:sup>U<jats:sub>3</jats:sub>O<jats:sub>8</jats:sub> samples inside the GIC were used to determine the relative and absolute neutron fluxes. The neutron energy spectra were obtained through unfolding the pulse height spectra measured by the EJ-309 liquid scintillator. The interference from the low-energy neutrons and impurities in the samples has been corrected. The present data of the <jats:sup>60</jats:sup>Ni(<jats:italic>n</jats:italic>, <jats:italic>α</jats:italic>)<jats:sup>57</jats:sup>Fe reaction are the first measurement results below 6.0 MeV, and those of the <jats:sup>61</jats:sup>Ni(<jats:italic>n</jats:italic>, <jats:italic>α</jats:italic>)<jats:sup>58</jats:sup>Fe reactions are the first measurement results in the MeV region. The present results have been compared with existing measurements, evaluations, and TALYS-1.9 calculations. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114102
Orientation dichroism effect of proton scattering on deformed nuclei *
Li Ou; Zhi-Gang Xiao
<jats:title>Abstract</jats:title> <jats:p>Proton-induced scattering of <jats:sup>238</jats:sup>U nuclei, with spheroidal deformations at beam energies above 100 MeV, is simulated using an improved quantum molecular dynamics model. The angular distribution of the deflected protons is highly sensitive to the orientation of the symmetrical long axis of the target nuclei with respect to the beam direction. As a result, in reverse kinematic reactions, an orientation dichroism effect is predicted, implying that the absorption rate of the <jats:sup>238</jats:sup>U beam by a proton target discerns between the parallel and perpendicular orientations of the deformed <jats:sup>238</jats:sup>U nuclei. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114103