Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Strong gravitational lensing for photon coupled to Weyl tensor in Kiselev black hole

G. Abbas; Asif Mahmood; M. Zubair

<jats:title>Abstract</jats:title> <jats:p>The objective of the present work is to highlight the phenomena of strong gravitational lensing and deflection angle for the photon coupling with the Weyl tensor in a Kiselev black hole. Here, we have extended the prior work of Chen and Jing (S. Chen and J. Jing, JCAP, <jats:bold>10</jats:bold>: 002 (2015)) for a Schwarzschild black hole to a Kiselev black hole. For this purpose, the equation of motion for the photons coupled to the Weyl tensor, null geodesic, and equation of photon sphere in a Kiselev black hole spacetime have been formulated. It is found that the equation of motion of the photons depends not only on the coupling between the photons and the Weyl tensor, but also on the polarization direction of the photons. There is a critical value of the coupling parameter, <jats:italic>α</jats:italic>, for the existence of the marginally circular photon orbit outside the event horizon, which depends on the parameters of the black hole and the polarization direction of the photons. Further, the polarization directions of the coupled photons and the coupling parameter, <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_095105_M2.jpg" xlink:type="simple" /> </jats:inline-formula>; both modify the features of the photon sphere, angle of deflection, and functions <jats:inline-formula> <jats:tex-math><?CDATA $ (\bar{a}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_095105_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{b})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_095105_M4.jpg" xlink:type="simple" /> </jats:inline-formula> owing to the strong gravitational lensing in the Kiselev black hole spacetime. In addition to this, the observable gravitational lensing quantities and the shadows of the Kiselev black hole spacetime are presented in detail. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 095105

Fine micro-thermal structures for Reissner-Nordström black hole *

Zhen-Ming Xu; Bin Wu; Wen-Li Yang

<jats:title>Abstract</jats:title> <jats:p>We solve the condundrum on whether the molecules of the Reissner-Nordström black hole interact through the Ruppeiner thermodynamic geometry, basing our study on the concept of the black hole molecule proposed in [Phys. Rev. Lett. 115 (2015) 111302] and choosing the appropriate extensive variables. Our results show that the Reissner-Nordström black hole is indeed an interaction system that may be dominated by repulsive interaction. More importantly, with the help of a novel quantity, namely the thermal-charge density, we describe the fine micro-thermal structures of the Reissner-Nordström black hole in detail. Three different phases are presented, namely the <jats:italic>free</jats:italic>, <jats:italic>interactive,</jats:italic> and <jats:italic>balanced</jats:italic> phases. The thermal-charge density plays a role similar to the order parameter, and the back hole undergoes a new phase transition between the <jats:italic>free</jats:italic> phase and <jats:italic>interactive</jats:italic> phase. The competition between the <jats:italic>free</jats:italic> phase and <jats:italic>interactive</jats:italic> phase exists, which leads to extreme behavior of the temperature of the Reissner-Nordström black hole. For the extreme Reissner-Nordström black hole, the entire system is completely in the <jats:italic>interactive</jats:italic> phase. More importantly, we provide the thermodynamic micro-mechanism for the formation of the naked singularity of the Reissner-Nordström black hole. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 095106

Constraints on the generalized natural inflation after Planck 2018 *

Nan Zhang; Ya-Bo Wu; Jun-Wang Lu; Chu-Wen Sun; Li-Jie Shou; Hai-Zhou Xu

<jats:title>Abstract</jats:title> <jats:p>Based on the dynamics of single scalar field slow-roll inflation and the theory of reheating, we investigate the generalized natural inflationary (GNI) model. We introduce constraints on the scalar spectral index <jats:italic>n<jats:sub>s</jats:sub> </jats:italic> and the tensor-to scalar ratio <jats:italic>r</jats:italic> for the <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_095107_M2.jpg" xlink:type="simple" /> </jats:inline-formula>CDM <jats:inline-formula> <jats:tex-math><?CDATA $+r$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_095107_M3.jpg" xlink:type="simple" /> </jats:inline-formula> model, according to the latest data from Planck 2018 TT, TE, EE+low E+lensing (P18) and BICEP2/Keck 2015 season (BK15), i.e., with <jats:inline-formula> <jats:tex-math><?CDATA $n_{s}=0.9659\pm0.0044$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_095107_M4.jpg" xlink:type="simple" /> </jats:inline-formula> at 68% confidence level (CL), and <jats:inline-formula> <jats:tex-math><?CDATA $r \lt 0.0623$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_095107_M5.jpg" xlink:type="simple" /> </jats:inline-formula> at 95% CL. We find that the GNI model is favored by P18 and BK15 in the ranges <jats:inline-formula> <jats:tex-math><?CDATA $\log_{10}(f/M_{p})= 0.62^{+0.17}_{-0.18}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_095107_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $m=0.35^{+0.13}_{-0.23}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_9_095107_M7.jpg" xlink:type="simple" /> </jats:inline-formula> at 68% CL. In addition, the corresponding predictions of generalized and two-phase reheating are discussed. It follows that the parameter <jats:italic>m</jats:italic> has significant effect on the model behavior. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 095107

A compact analytical approximation for a light sterile neutrino oscillation in matter *

Bao-Biao Yue; Wei Li; Jia-Jie Ling; Fan-Rong Xu

<jats:title>Abstract</jats:title> <jats:p>The existence of light sterile neutrinos is a long-standing question in particle physics. Several experimental “anomalies” might be explained by introducing eV mass scaled light sterile neutrinos. Many experiments are actively searching for such light sterile neutrinos through neutrino oscillation. For long baseline experiments, the matter effect should be treated carefully for precise calculation of the neutrino oscillation probabilities. However, this is usually time-consuming or analytically complex. In this manuscript, we adopt a Jacobi-like method to diagonalize the Hermitian Hamiltonian matrix and derive analytically simplified neutrino oscillation probabilities for 3 (active) + 1 (sterile)-neutrino mixing for a constant matter density. These approximations can reach a considerably high numerical accuracy while retaining their analytical simplicity and fast computing speed. This would be useful for current and future long baseline neutrino oscillation experiments.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 103001

Equation of state and chiral transition in soft-wall AdS/QCD with a more realistic gravitational background *

Zhen Fang; Yue-Liang Wu

<jats:title>Abstract</jats:title> <jats:p>We construct an improved soft-wall AdS/QCD model with a cubic coupling term of the dilaton and the bulk scalar field. The background fields in this model are solved by the Einstein-dilaton system with a nontrivial dilaton potential, which has been shown to reproduce the equation of state from the lattice QCD with two flavors. The chiral transition behaviors are investigated in the improved soft-wall AdS/QCD model with the solved gravitational background, and the crossover transition can be realized. Our study provides the possibility to address the deconfining and chiral phase transitions simultaneously in the bottom-up holographic framework.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 103101

Analysis of the strong decays of Pc(4312) as a pentaquark molecular state with QCD sum rules *

Zhi-Gang Wang; Xu Wang

<jats:title>Abstract</jats:title> <jats:p>In this article, we tentatively assign <jats:italic>P<jats:sub>c</jats:sub> </jats:italic>(4312) to be the <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}\Sigma_c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103102_M2.jpg" xlink:type="simple" /> </jats:inline-formula> pentaquark molecular state with the spin-parity <jats:inline-formula> <jats:tex-math><?CDATA $J^P={\frac{1}{2}}^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103102_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, and discuss the factorizable and non-factorizable contributions in the two-point QCD sum rules for the <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}\Sigma_c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> molecular state in detail to prove the reliability of the single pole approximation in the hadronic spectral density. We study its two-body strong decays with the QCD sum rules, and special attention is paid to match the hadron side with the QCD side of the correlation functions to obtain solid duality. We obtain the partial decay widths <jats:inline-formula> <jats:tex-math><?CDATA $\Gamma\left(P_c(4312)\to \eta_c p\right)=0.255\,\,{\rm{MeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\Gamma\left(P_c(4312)\to J/\psi p\right)=9.296^{+19.542}_{-9.296}\,\,{\rm{MeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103102_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, which are compatible with the experimental value of the total width, and support assigning <jats:inline-formula> <jats:tex-math><?CDATA $P_c(4312)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103102_M7.jpg" xlink:type="simple" /> </jats:inline-formula> to be the <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}\Sigma_c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103102_M8.jpg" xlink:type="simple" /> </jats:inline-formula> pentaquark molecular state. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 103102

Logarithmic Regge pole

S. D. Campos

<jats:title>Abstract</jats:title> <jats:p>This work presents the subtraction procedure and the Regge cut in the logarithmic Regge pole approach. The subtraction mechanism leads to the same asymptotic behavior as previously obtained in the non-subtraction case. The Regge cut, in contrast, introduces a clear role to the non-leading contributions for the asymptotic behavior of the total cross-section. From these results, some simple parameterization is introduced to fit the experimental data for the proton-proton and antiproton-proton total cross-section above some minimum value up to the cosmic-ray. The fit parameters obtained are used to present predictions for the <jats:inline-formula> <jats:tex-math><?CDATA $ \rho(s)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103103_M1.jpg" xlink:type="simple" /> </jats:inline-formula>-parameter as well as to the elastic slope <jats:inline-formula> <jats:tex-math><?CDATA $ B(s)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> at high energies. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 103103

Studying the localized CP violation and the branching fraction of the decay *

Jing-Juan Qi; Zhen-Yang Wang; Jing Xu; Xin-Heng Guo

<jats:title>Abstract</jats:title> <jats:p>In this work, we study the localized <jats:inline-formula> <jats:tex-math><?CDATA $ CP $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M2.jpg" xlink:type="simple" /> </jats:inline-formula> violation and the branching fraction of the four-body decay <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{B}^0\rightarrow K^-\pi^+\pi^-\pi^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> by employing a quasi-two-body QCD factorization approach. Considering the interference of <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{B}^0\rightarrow \bar{K}_0^*(700)\rho^0(770)\rightarrow K^-\pi^+\pi^-\pi^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{B}^0\rightarrow \bar{K}^*(892)f_0(500)\rightarrow K^-\pi^+\pi^-\pi^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> channels, we predict <jats:inline-formula> <jats:tex-math><?CDATA $ \mathcal{A_{CP}}(\bar{B}^0\rightarrow K^-\pi^+\pi^-\pi^+)\in [0.15,0.28] $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{B}}(\bar{B}^0\rightarrow K^-\pi^+\pi^-\pi^+)\in[1.73,5.10]\times10^{-7} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively, which shows that the interference mechanism of these two channels can induce the localized <jats:inline-formula> <jats:tex-math><?CDATA $ CP $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M8.jpg" xlink:type="simple" /> </jats:inline-formula> violation to this four-body decay. Meanwhile, within the two quark model framework for the scalar mesons <jats:inline-formula> <jats:tex-math><?CDATA $ f_0(500) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M9.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{K}_0^*(700) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, we calculate the direct <jats:italic>CP</jats:italic> violations and branching fractions of the <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{B}^0\rightarrow \bar{K}_0^*(700)\rho^0(770) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M11.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{B}^0\rightarrow \bar{K}^*(892)f_0(500) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M12.jpg" xlink:type="simple" /> </jats:inline-formula> decays, respectively. The corresponding results are <jats:inline-formula> <jats:tex-math><?CDATA $ \mathcal{A_{CP}}(\bar{B}^0\rightarrow \bar{K}_0^*(700)\rho^0(770)) \in [0.20, 0.36] $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \mathcal{A_{CP}}(\bar{B}^0\rightarrow \bar{K}^*(892)f_0(500))\in [0.08, 0.12] $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M14.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{B}} (\bar{B}^0\rightarrow \bar{K}_0^*(700) \rho^0(770)\in [6.76, 18.93]\times10^{-8}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M15.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{B}} (\bar{B}^0\rightarrow \bar{K}^*(892)f_0(500))\in [2.66, 4.80]\times10^{-6} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M16.jpg" xlink:type="simple" /> </jats:inline-formula>, indicating that the <jats:inline-formula> <jats:tex-math><?CDATA $ CP $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_103104_M17.jpg" xlink:type="simple" /> </jats:inline-formula> violations of these two-body decays are both positive and the branching fractions quite different. These studies provide a new way to investigate the aforementioned four-body decay and can be helpful in clarifying the configuration of the structure of the light scalar meson. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 103104

Measurement of away-side broadening with self-subtraction of flow in Au+Au collisions at GeV *

J. Adam; L. Adamczyk; J. R. Adams; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; D. M. Anderson; A. Aparin; E. C. Aschenauer; M. U. Ashraf; F. G. Atetalla; A. Attri; G. S. Averichev; V. Bairathi; K. Barish; A. Behera; R. Bellwied; A. Bhasin; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; J. D. Brandenburg; A. V. Brandin; J. Butterworth; H. Caines; M. Calderón de la Barca Sánchez; D. Cebra; I. Chakaberia; P. Chaloupka; B. K. Chan; F-H. Chang; Z. Chang; N. Chankova-Bunzarova; A. Chatterjee; D. Chen; J. H. Chen; X. Chen; Z. Chen; J. Cheng; M. Cherney; M. Chevalier; S. Choudhury; W. Christie; X. Chu; H. J. Crawford; M. Csanád; M. Daugherity; T. G. Dedovich; I. M. Deppner; A. A. Derevschikov; L. Didenko; X. Dong; J. L. Drachenberg; J. C. Dunlop; T. Edmonds; N. Elsey; J. Engelage; G. Eppley; S. Esumi; O. Evdokimov; A. Ewigleben; O. Eyser; R. Fatemi; S. Fazio; P. Federic; J. Fedorisin; C. J. Feng; Y. Feng; P. Filip; E. Finch; Y. Fisyak; A. Francisco; L. Fulek; C. A. Gagliardi; T. Galatyuk; F. Geurts; A. Gibson; K. Gopal; D. Grosnick; W. Guryn; A. I. Hamad; A. Hamed; S. Harabasz; J. W. Harris; S. He; W. He; X. H. He; S. Heppelmann; S. Heppelmann; N. Herrmann; E. Hoffman; L. Holub; Y. Hong; S. Horvat; Y. Hu; H. Z. Huang; S. L. Huang; T. Huang; X. Huang; T. J. Humanic; P. Huo; G. Igo; D. Isenhower; W. W. Jacobs; C. Jena; A. Jentsch; Y. JI; J. Jia; K. Jiang; S. Jowzaee; X. Ju; E. G. Judd; S. Kabana; M. L. Kabir; S. Kagamaster; D. Kalinkin; K. Kang; D. Kapukchyan; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; M. Kelsey; Y. V. Khyzhniak; D. P. Kikoła; C. Kim; B. Kimelman; D. Kincses; T. A. Kinghorn; I. Kisel; A. Kiselev; M. Kocan; L. Kochenda; L. K. Kosarzewski; L. Kramarik; P. Kravtsov; K. Krueger; N. Kulathunga Mudiyanselage; L. Kumar; S. Kumar; R. Kunnawalkam Elayavalli; J. H. Kwasizur; R. Lacey; S. Lan; J. M. Landgraf; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; Y. H. Leung; C. Li; W. Li; W. Li; X. Li; Y. Li; Y. Liang; R. Licenik; T. Lin; Y. Lin; M. A. Lisa; F. Liu; H. Liu; P. Liu; P. Liu; T. Liu; X. Liu; Y. Liu; Z. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; N. S. Lukow; S. Luo; X. Luo; G. L. Ma; L. Ma; R. Ma; Y. G. Ma; N. Magdy; R. Majka; D. Mallick; S. Margetis; C. Markert; H. S. Matis; J. A. Mazer; N. G. Minaev; S. Mioduszewski; B. Mohanty; I. Mooney; Z. Moravcova; D. A. Morozov; M. Nagy; J. D. Nam; Nasim Md.; K. Nayak; D. Neff; J. M. Nelson; D. B. Nemes; M. Nie; G. Nigmatkulov; T. Niida; L. V. Nogach; T. Nonaka; A. S. Nunes; G. Odyniec; A. Ogawa; S. Oh; V. A. Okorokov; B. S. Page; R. Pak; A. Pandav; Y. Panebratsev; B. Pawlik; D. Pawlowska; H. Pei; C. Perkins; L. Pinsky; R. L. Pintér; J. Pluta; J. Porter; M. Posik; N. K. Pruthi; M. Przybycien; J. Putschke; H. Qiu; A. Quintero; S. K. Radhakrishnan; S. Ramachandran; R. L. Ray; R. Reed; H. G. Ritter; O. V. Rogachevskiy; J. L. Romero; L. Ruan; J. Rusnak; N. R. Sahoo; H. Sako; S. Salur; J. Sandweiss; S. Sato; W. B. Schmidke; N. Schmitz; B. R. Schweid; F. Seck; J. Seger; M. Sergeeva; R. Seto; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; A. I. Sheikh; F. Shen; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; R. Sikora; M. Simko; J. Singh; S. Singha; N. Smirnov; W. Solyst; P. Sorensen; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; M. Stefaniak; D. J. Stewart; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. Sumbera; B. Summa; X. M. Sun; X. Sun; Y. Sun; Y. Sun; B. Surrow; D. N. Svirida; P. Szymanski; A. H. Tang; Z. Tang; A. Taranenko; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; C. A. Tomkiel; S. Trentalange; R. E. Tribble; P. Tribedy; S. K. Tripathy; O. D. Tsai; Z. Tu; T. Ullrich; D. G. Underwood; I. Upsal; G. Van Buren; J. Vanek; A. N. Vasiliev; I. Vassiliev; F. Videbæk; S. Vokal; S. A. Voloshin; F. Wang; G. Wang; J. S. Wang; P. Wang; Y. Wang; Y. Wang; Z. Wang; J. C. Webb; P. C. Weidenkaff; L. Wen; G. D. Westfall; H. Wieman; S. W. Wissink; R. Witt; Y. Wu; Z. G. Xiao; G. Xie; W. Xie; H. Xu; N. Xu; Q. H. Xu; Y. F. Xu; Y. Xu; Z. Xu; Z. Xu; C. Yang; Q. Yang; S. Yang; Y. Yang; Z. Yang; Z. Ye; Z. Ye; L. Yi; K. Yip; H. Zbroszczyk; W. Zha; C. Zhang; D. Zhang; S. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Y. Zhang; Z. J. Zhang; Z. Zhang; Z. Zhang; J. Zhao; C. Zhong; C. Zhou; X. Zhu; Z. Zhu; M. Zurek; M. Zyzak

<jats:title>Abstract</jats:title> <jats:p>High transverse momentum ( <jats:inline-formula> <jats:tex-math><?CDATA $ p_T $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104001_M2.jpg" xlink:type="simple" /> </jats:inline-formula>) particle production is suppressed owing to the parton (jet) energy loss in the hot dense medium created in relativistic heavy-ion collisions. Redistribution of energy at low-to-modest <jats:inline-formula> <jats:tex-math><?CDATA $ p_T $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> has been difficult to measure, owing to large anisotropic backgrounds. We report a data-driven method for background evaluation and subtraction, exploiting the away-side pseudorapidity gaps, to measure the jetlike correlation shape in Au+Au collisions at <jats:inline-formula> <jats:tex-math><?CDATA $\sqrt{s_{{NN}}} = 200$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> GeV in the STAR experiment. The correlation shapes, for trigger particles <jats:inline-formula> <jats:tex-math><?CDATA $ p_T \gt 3\;{\rm{GeV}}/{\rm{c}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and various associated particle <jats:inline-formula> <jats:tex-math><?CDATA $ p_T $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104001_M6.jpg" xlink:type="simple" /> </jats:inline-formula> ranges within <jats:inline-formula> <jats:tex-math><?CDATA $ 0.5 \lt p_T \lt 10\;{\rm{GeV}}/{\rm{c}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104001_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, are consistent with Gaussians, and their widths increase with centrality. The results indicate jet broadening in the medium created in central heavy-ion collisions. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 104001

Quenching of transition results from 2p-1h doorway mechanism by p-wave neutron excitation *

Tao-Feng Wang; Xiao-Ting Yang; T. Katabuchi; Zi-Ming Li; Zhi-Bo Xu; G. N. Kim; T. I. Ro; Ying-Lu Han; Li-Hua Zhu; M. Igashira

<jats:title>Abstract</jats:title> <jats:p>The ratio of <jats:inline-formula> <jats:tex-math><?CDATA $\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104002_M2.jpg" xlink:type="simple" /> </jats:inline-formula> transition-intensities from the initial capture state to low-lying states may represent the model-independent <jats:inline-formula> <jats:tex-math><?CDATA $\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104002_M3.jpg" xlink:type="simple" /> </jats:inline-formula>-strength function, which reflects the effects of different neutron-capture reaction mechanisms. The extraordinary quenching of the <jats:inline-formula> <jats:tex-math><?CDATA $\gamma_{0}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104002_M4.jpg" xlink:type="simple" /> </jats:inline-formula> transition from the <jats:italic>p</jats:italic>-wave neutron radiative capture in <jats:inline-formula> <jats:tex-math><?CDATA $^{57}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104002_M5.jpg" xlink:type="simple" /> </jats:inline-formula>Fe is observed, for the first time, from the pronounced enhancement of the <jats:inline-formula> <jats:tex-math><?CDATA $\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104002_M6.jpg" xlink:type="simple" /> </jats:inline-formula>-strength function ratios <jats:inline-formula> <jats:tex-math><?CDATA $f_{\gamma_{1}}/f_{\gamma_{0}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104002_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $f_{\gamma_{2}}/f_{\gamma_{0}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104002_M8.jpg" xlink:type="simple" /> </jats:inline-formula>. The 2<jats:italic>p</jats:italic>-1<jats:italic>h</jats:italic> doorway excitation leads to suppression of the <jats:inline-formula> <jats:tex-math><?CDATA $\gamma_{0}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104002_M9.jpg" xlink:type="simple" /> </jats:inline-formula> transition to the ground state and the enhancement of the <jats:inline-formula> <jats:tex-math><?CDATA $\gamma_{1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104002_M10.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\gamma_{2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104002_M11.jpg" xlink:type="simple" /> </jats:inline-formula> transitions to the first and second excited states, respectively. The <jats:inline-formula> <jats:tex-math><?CDATA $fp$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104002_M12.jpg" xlink:type="simple" /> </jats:inline-formula> sub-shells supply the exact number of spaces required for the 2<jats:italic>p</jats:italic>-1<jats:italic>h</jats:italic> configuration, which features the neutron capture mechanism in the vicinity of <jats:italic>A</jats:italic>= 55. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 104002