Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Running vacuum model in a non-flat universe *

Chao-Qiang Geng; Yan-Ting Hsu; Lu Yin; Kaituo Zhang

<jats:title>Abstract</jats:title> <jats:p>We investigate observational constraints on the running vacuum model (RVM) of <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda=3\nu (H^{2}+K/a^2)+c_0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M1.jpg" xlink:type="simple" /> </jats:inline-formula> in a spatially curved universe, where <jats:inline-formula> <jats:tex-math><?CDATA $\nu$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M2.jpg" xlink:type="simple" /> </jats:inline-formula> is the model parameter, <jats:inline-formula> <jats:tex-math><?CDATA $K$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> corresponds to the spatial curvature constant, <jats:inline-formula> <jats:tex-math><?CDATA $a$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> represents the scalar factor, and <jats:inline-formula> <jats:tex-math><?CDATA $c_{0}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> is a constant defined by the boundary conditions. We study the CMB power spectra with several sets of <jats:inline-formula> <jats:tex-math><?CDATA $\nu$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $K$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M7.jpg" xlink:type="simple" /> </jats:inline-formula> in the RVM. By fitting the cosmological data, we find that the best fitted <jats:inline-formula> <jats:tex-math><?CDATA $\chi^2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M8.jpg" xlink:type="simple" /> </jats:inline-formula> value for RVM is slightly smaller than that of <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M9.jpg" xlink:type="simple" /> </jats:inline-formula>CDM in the non-flat universe, along with the constraints of <jats:inline-formula> <jats:tex-math><?CDATA $\nu\leqslant O(10^{-4})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M10.jpg" xlink:type="simple" /> </jats:inline-formula> (68% C.L.) and <jats:inline-formula> <jats:tex-math><?CDATA $|\Omega_K=-K/(aH)^2|\leqslant O(10^{-2})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M11.jpg" xlink:type="simple" /> </jats:inline-formula> (95% C.L.). In particular, our results favor the open universe in both <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M12.jpg" xlink:type="simple" /> </jats:inline-formula>CDM and RVM. In addition, we show that the cosmological constraints of <jats:inline-formula> <jats:tex-math><?CDATA $\Sigma m_{\nu}=0.256^{+0.224}_{-0.234}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M13.jpg" xlink:type="simple" /> </jats:inline-formula> (RVM) and <jats:inline-formula> <jats:tex-math><?CDATA $\Sigma m_{\nu}=0.257^{+0.219}_{-0.234}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M14.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105104_M15.jpg" xlink:type="simple" /> </jats:inline-formula>CDM) at 95% C.L. for the neutrino mass sum are relaxed in both models in the spatially curved universe. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 105104

Jet quenching parameter from a soft wall AdS/QCD model *

Xiangrong Zhu; Zi-qiang Zhang

<jats:title>Abstract</jats:title> <jats:p>We study the effect of chemical potential and nonconformality on the jet quenching parameter in a holographic QCD model with conformal invariance broken by background dilaton. The presence of chemical potential and nonconformality both increase the jet quenching parameter, thus enhancing the energy loss, consistently with the findings of the drag force.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 105105

Exploring physical properties of compact stars in f(R,T)-gravity: An embedding approach

Ksh. Newton Singh; Abdelghani Errehymy; Farook Rahaman; Mohammed Daoud

<jats:title>Abstract</jats:title> <jats:p>Solving field equations exactly in <jats:inline-formula> <jats:tex-math><?CDATA $f(R,T)-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105106_M2.jpg" xlink:type="simple" /> </jats:inline-formula>gravity is a challenging task. To do so, many authors have adopted different methods such as assuming both the metric functions and an equation of state (EoS) and a metric function. However, such methods may not always lead to well-behaved solutions, and the solutions may even be rejected after complete calculations. Nevertheless, very recent studies on embedding class-one methods suggest that the chances of arriving at a well-behaved solution are very high, which is inspiring. In the class-one approach, one of the metric potentials is estimated and the other can be obtained using the Karmarkar condition. In this study, a new class-one solution is proposed that is well-behaved from all physical points of view. The nature of the solution is analyzed by tuning the <jats:inline-formula> <jats:tex-math><?CDATA $f(R,T)-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105106_M3.jpg" xlink:type="simple" /> </jats:inline-formula>coupling parameter <jats:inline-formula> <jats:tex-math><?CDATA $\chi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105106_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, and it is found that the solution leads to a stiffer EoS for <jats:inline-formula> <jats:tex-math><?CDATA $\chi=-1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105106_M5.jpg" xlink:type="simple" /> </jats:inline-formula> than that for <jats:inline-formula> <jats:tex-math><?CDATA $\chi=1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105106_M6.jpg" xlink:type="simple" /> </jats:inline-formula>. This is because for small values of <jats:inline-formula> <jats:tex-math><?CDATA $\chi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105106_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, the velocity of sound is higher, leading to higher values of <jats:inline-formula> <jats:tex-math><?CDATA $M_{\rm max}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105106_M8.jpg" xlink:type="simple" /> </jats:inline-formula> in the <jats:inline-formula> <jats:tex-math><?CDATA $M-R$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105106_M9.jpg" xlink:type="simple" /> </jats:inline-formula> curve and the EoS parameter <jats:inline-formula> <jats:tex-math><?CDATA $\omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105106_M10.jpg" xlink:type="simple" /> </jats:inline-formula>. The solution satisfies the causality condition and energy conditions and remains stable and static under radial perturbations (static stability criterion) and in equilibrium (modified TOV equation). The resulting <jats:inline-formula> <jats:tex-math><?CDATA $M-R$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105106_M11.jpg" xlink:type="simple" /> </jats:inline-formula> diagram is well-fitted with observed values from a few compact stars such as PSR J1614-2230, Vela X-1, Cen X-3, and SAX J1808.4-3658. Therefore, for different values of <jats:inline-formula> <jats:tex-math><?CDATA $\chi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105106_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, the corresponding radii and their respective moments of inertia have been predicted from the <jats:inline-formula> <jats:tex-math><?CDATA $M-I$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105106_M13.jpg" xlink:type="simple" /> </jats:inline-formula> curve. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 105106

Revisiting black hole thermodynamics in massive gravity: charged particle absorption and infalling shell of dust *

Shi-Qian Hu; Bo Liu; Xiao-Mei Kuang; Rui-Hong Yue

<jats:title>Abstract</jats:title> <jats:p>In this study, we apply two methods to consider the variation of massive black holes in both normal and extended thermodynamic phase spaces. The first method considers a charged particle being absorbed by the black hole, whereas the second considers a shell of dust falling into it. With the former method, the first and second laws of thermodynamics are always satisfied in the normal phase space; however, in the extended phase space, the first law is satisfied but the validity of the second law of thermodynamics depends upon the model parameters. With the latter method, both laws are valid. We argue that the former method's violation of the second law of thermodynamics may be attributable to the assumption that the change of internal energy of the black hole is equal to the energy of the particle. Finally, we demonstrate that the event horizon always ensures the validity of weak cosmic censorship in both phase spaces; this means that the violation of the second law of thermodynamics, arising under the aforementioned assumption, does not affect the weak cosmic censorship conjecture. This further supports our argument that the assumption in the first method is responsible for the violation and requires deeper treatment.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 105107

The effective potential originating from swampland and the non-trivial Brans-Dicke coupling *

Qi Li; Jing Li; Yongxiang Zhou; Xun Xue

<jats:title>Abstract</jats:title> <jats:p>The effective vacuum energy density contributed by the non-trivial contortion distribution and the bare vacuum energy density can be viewed as the energy density of the auxiliary quintessence field potential. We find that the negative bare vacuum energy density from string landscape leads to a monotonically decreasing quintessence potential while the positive one from swampland leads to the metastable or stable de Sitter-like potential. Moreover, the non-trivial Brans-Dicke like coupling between the quintessence field and gravitation field is necessary in the latter case.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 105108

Mesonic condensation in isospin matter under rotation *

Hui Zhang; Defu Hou; Jin-Feng Liao

<jats:title>Abstract</jats:title> <jats:p>We investigate mesonic condensation in isospin matter under rotation. Using the two-flavor NJL effective model in the presence of global rotation, we demonstrate two important effects of rotation on its phase structure: a rotational suppression of the scalar-channel condensates, in particular, the pion condensation region; and a rotational enhancement of the rho condensation region with vector-channel condensate. A new phase diagram for isospin matter under rotation is mapped out on the <jats:inline-formula> <jats:tex-math><?CDATA $ \omega-\mu_I$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_111001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> plane where the three distinct phases, corresponding to the <jats:inline-formula> <jats:tex-math><?CDATA $ \sigma,\; \pi, \;\rho$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_111001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> -dominated regions, respectively, are separated by a second-order line at low isospin chemical potential as well as a first-order line at high rotation and are further connected at a tri-critical point. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 111001

Unified interpretation of scalegenesis in conformally extended standard models: a dynamical origin of Higgs portal *

Hiroyuki Ishida; Shinya Matsuzaki; Ruiwen Ouyang

<jats:title>Abstract</jats:title> <jats:p>We present a universal interpretation of a class of conformal extended standard models that include Higgs portal interactions as realized in low-energy effective theories. The scale generation mechanism in this class (scalegenesis) arises along the (nearly) conformal/flat direction for breaking scale symmetry, where the electroweak symmetry-breaking structure arises similarly as in the standard model. A dynamical origin for the Higgs portal coupling can provide the discriminator for the low-energy “universality class,” to be probed in forthcoming collider experiments.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 111002

Recent progress in multiple chiral doublet bands *

Shou-Yu Wang

<jats:title>Abstract</jats:title> <jats:p>Recent progress regarding multiple chiral doublet bands ( <jats:inline-formula> <jats:tex-math><?CDATA $ {\rm{M}}\chi{\rm{D}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_112001_M1.jpg" xlink:type="simple" /> </jats:inline-formula>) is reviewed from the experimental and theoretical perspectives. In particular, the experimental findings, theoretical predictions, selection rule for electromagnetic transitions, <jats:inline-formula> <jats:tex-math><?CDATA $ {\rm{M}}\chi{\rm{D}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_112001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> with octupole correlations, and some related topics are highlighted. Based on these discussions, it is of great scientific interest to search for the other <jats:inline-formula> <jats:tex-math><?CDATA $ {\rm{M}}\chi{\rm{D}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_112001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, as well as possible chiral wobblers, chirality-parity quartet bands, and chirality-pseudospin triplet (or quartet) bands in the nuclear system. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 112001

Probing electroweak dark matter at 14 TeV LHC *

Shuai Xu; Si-Bo Zheng

<jats:title>Abstract</jats:title> <jats:p>Well-motivated electroweak dark matter is often hosted by an extended electroweak sector that also contains new lepton pairs with masses near the weak scale. In this study, we explore such electroweak dark matter by combining dark matter direct detection experiments and high-luminosity LHC probes of new lepton pairs. Using <jats:italic>Z</jats:italic>- and <jats:italic>W</jats:italic>-associated electroweak processes with two or three lepton final states, we show that depending on the overall coupling constant, dark matter masses of up to 170-210 GeV can be excluded at the <jats:inline-formula> <jats:tex-math><?CDATA $2\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113101_M2.jpg" xlink:type="simple" /> </jats:inline-formula> level and those up to <jats:inline-formula> <jats:tex-math><?CDATA $175-205$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113101_M3.jpg" xlink:type="simple" /> </jats:inline-formula> GeV can be discovered at the <jats:inline-formula> <jats:tex-math><?CDATA $5\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113101_M4.jpg" xlink:type="simple" /> </jats:inline-formula> level at the 14 TeV LHC with integrated luminosities of 300 fb <jats:inline-formula> <jats:tex-math><?CDATA $^{-1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113101_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and 3000 fb <jats:inline-formula> <jats:tex-math><?CDATA $^{-1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113101_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 113101

Gauge dependence of the perturbative QCD predictions under the momentum-space subtraction scheme *

Jun Zeng; Xing-Gang Wu; Xu-Chang Zheng; Jian-Ming Shen

<jats:title>Abstract</jats:title> <jats:p>The momentum-space subtraction (MOM) scheme is one of the most frequently used renormalization schemes in perturbative QCD (pQCD) theory. In this paper, we discuss in detail the gauge dependence of the pQCD predictions obtained under the MOM scheme. Conventionally, a renormalization scale ambiguity exists for the fixed-order pQCD predictions; this assigns an arbitrary range and error for the fixed-order pQCD prediction and makes the discussions on the issue of the gauge dependence much more involved. The principle of maximum conformality (PMC) adopts the renormalization group equation to determine the magnitude of the coupling constant; hence, it determines the effective momentum flow of the process, which is independent of the choice of renormalization scale. Thus, no renormalization scale ambiguity exists in PMC predictions. To focus our attention on the MOM scheme's gauge dependence, we first apply the PMC to deal with the pQCD series. As an explicit example, we adopt the Higgs boson decay width <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma(H\to gg) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M1.jpg" xlink:type="simple" /> </jats:inline-formula> up to its five-loop QCD contribution, to demonstrate the behavior of the gauge dependence before and after applying the PMC. Interaction vertices are chosen to define five different MOM schemes: mMOM, MOMh, MOMq, MOMg, and MOMgg. Under these MOM schemes, we obtain <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma(H \to gg)|^{\rm{mMOM}}_{\rm{PMC}} =$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M2-1.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $332.8{^{+11.6}_{-3.7}}\pm7.3\; \rm{keV}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma(H \to gg)|^{\rm{MOMh}}_{\rm{PMC}} = 332.8{^{+27.5}_{-34.6}}\pm7.3\; \rm{keV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma(H \to gg)|^{\rm{MOMq}}_{\rm{PMC}} = 332.9{^{+27.4}_{-34.7}}\pm 7.3\; \rm{keV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma(H \to gg)|^{\rm{MOMg}}_{\rm{PMC}} = 332.7{^{+27.5}_{-34.6}}\pm7.3\; \rm{keV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma(H \to gg)|^{\rm{MOMgg}}_{\rm{PMC}} = 337.9{^{+1.2}_{-1.7}}\pm 7.7\; \rm{keV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M6.jpg" xlink:type="simple" /> </jats:inline-formula>; here, the central values correspond to the Landau gauge with the gauge parameter <jats:inline-formula> <jats:tex-math><?CDATA $ \xi^{\rm MOM} = 0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, the first errors correspond to <jats:inline-formula> <jats:tex-math><?CDATA $ \xi^{\rm MOM}\in[-1,1] $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, and the second ones arise through taking <jats:inline-formula> <jats:tex-math><?CDATA $ \Delta \alpha_s^{\overline{\rm MS}}(M_Z) = \pm0.0011 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M9.jpg" xlink:type="simple" /> </jats:inline-formula>. The uncertainty of the Higgs mass <jats:inline-formula> <jats:tex-math><?CDATA $ \Delta M_H = 0.24\; \rm{GeV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M10.jpg" xlink:type="simple" /> </jats:inline-formula> causes an extra error of <jats:inline-formula> <jats:tex-math><?CDATA $ \sim \pm1.7 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M11.jpg" xlink:type="simple" /> </jats:inline-formula> (or <jats:inline-formula> <jats:tex-math><?CDATA $ \sim\pm1.8 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M12.jpg" xlink:type="simple" /> </jats:inline-formula>) keV for all the aforementioned MOM schemes. It is found that the Higgs decay width <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma (H\to gg) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M13.jpg" xlink:type="simple" /> </jats:inline-formula> depends very weakly on the choice of MOM scheme, which is consistent with renormalization group invariance. It is found that the gauge dependence of <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma(H\to gg) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M14.jpg" xlink:type="simple" /> </jats:inline-formula> under the <jats:inline-formula> <jats:tex-math><?CDATA $ \rm{MOMgg} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_113102_M15.jpg" xlink:type="simple" /> </jats:inline-formula> scheme is less than ±1%, which is the smallest gauge dependence among all the aforementioned MOM schemes. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 113102