Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
The angular distributions of elastic scattering of 12,13C+Zr *
Cui-Hua Rong; Gao-Long Zhang; Lin Gan; Zhi-Hong Li; L. C. Brandão; E. N. Cardozo; M. R. Cortes; Yun-Ju Li; Jun Su; Sheng-Quan Yan; Sheng Zeng; Gang Lian; Bing Guo; You-Bao Wang; Wei-Ping Liu; J. Lubian
<jats:title>Abstract</jats:title> <jats:p>To obtain the neutron spectroscopic amplitudes for <jats:sup>90-96</jats:sup>Zr overlaps, experimental data of elastic scattering with small experimental errors and precise optical potentials were analyzed. In this study, the elastic scattering angular distributions of <jats:inline-formula> <jats:tex-math><?CDATA ${}^{12,13}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104003_M2.jpg" xlink:type="simple" /> </jats:inline-formula>C + <jats:inline-formula> <jats:tex-math><?CDATA ${}^{A} {\rm{Zr}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104003_M3.jpg" xlink:type="simple" /> </jats:inline-formula> (<jats:italic>A</jats:italic> = 90, 91, 92, 94, 96) were measured using the high-precision Q3D magnetic spectrometer in the Tandem accelerator. The São Paulo potential was used for the optical potential. The optical model and coupled channel calculations were compared with the experimental data. The theoretical results were found to be very close to the experimental data. In addition, the possible effects of the couplings to the inelastic channels of the <jats:inline-formula> <jats:tex-math><?CDATA ${}^A {\rm{Zr}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104003_M4.jpg" xlink:type="simple" /> </jats:inline-formula> targets and <jats:inline-formula> <jats:tex-math><?CDATA ${}^{12, 13}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104003_M5.jpg" xlink:type="simple" /> </jats:inline-formula>C projectiles on the elastic scattering were studied. It was observed that the couplings to the inelastic channels of the <jats:inline-formula> <jats:tex-math><?CDATA ${}^{12,13}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104003_M6.jpg" xlink:type="simple" /> </jats:inline-formula>C projectiles could improve the agreement with the experimental data, while the inelastic couplings to the target states are of minor importance. The effect of the one-neutron stripping in the <jats:inline-formula> <jats:tex-math><?CDATA ${}^{13}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104003_M7.jpg" xlink:type="simple" /> </jats:inline-formula>C+ <jats:inline-formula> <jats:tex-math><?CDATA ${}^A {\rm{Zr}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104003_M8.jpg" xlink:type="simple" /> </jats:inline-formula> elastic scattering was also studied. The one-neutron stripping channel in <jats:inline-formula> <jats:tex-math><?CDATA ${}^{13}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104003_M9.jpg" xlink:type="simple" /> </jats:inline-formula>C + <jats:inline-formula> <jats:tex-math><?CDATA ${}^A {\rm{Zr}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104003_M10.jpg" xlink:type="simple" /> </jats:inline-formula> was found to be not relevant and did not affect the elastic scattering angular distributions. Our results also show that in the reactions with the considered zirconium isotopes, the presence of the extra neutron in <jats:inline-formula> <jats:tex-math><?CDATA ${}^{13}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104003_M11.jpg" xlink:type="simple" /> </jats:inline-formula>C does not influence the reaction mechanism, which is governed by the collective excitation of the <jats:inline-formula> <jats:tex-math><?CDATA ${}^{12}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104003_M12.jpg" xlink:type="simple" /> </jats:inline-formula>C core. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 104003
Possibility of observation of hidden-bottom pentaquark resonances in bottomonium photoproduction on protons and nuclei near threshold
E. Ya. Paryev
<jats:title>Abstract</jats:title> <jats:p>We study the <jats:inline-formula> <jats:tex-math><?CDATA $\Upsilon(1S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> meson photoproduction on protons and nuclei at near-threshold center-of-mass energies below 11.4 GeV (or at the corresponding photon laboratory energies <jats:inline-formula> <jats:tex-math><?CDATA $E_{\gamma}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M2.jpg" xlink:type="simple" /> </jats:inline-formula> below 68.8 GeV). We calculate the absolute excitation functions for the nonresonant and resonant photoproduction of <jats:inline-formula> <jats:tex-math><?CDATA $\Upsilon(1S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M3.jpg" xlink:type="simple" /> </jats:inline-formula> mesons off protons at incident photon laboratory energies of 63-68 GeV by considering direct ( <jats:inline-formula> <jats:tex-math><?CDATA ${\gamma}p \to {\Upsilon(1S)}p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M4.jpg" xlink:type="simple" /> </jats:inline-formula>) and two-step ( <jats:inline-formula> <jats:tex-math><?CDATA ${\gamma}p \to P^+_b(11080) \to {\Upsilon(1S)}p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA ${\gamma}p \to P^+_b(11125) \to {\Upsilon(1S)}p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA ${\gamma}p \to P^+_b(11130) \to {\Upsilon(1S)}p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M7.jpg" xlink:type="simple" /> </jats:inline-formula>) <jats:inline-formula> <jats:tex-math><?CDATA $\Upsilon(1S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M8.jpg" xlink:type="simple" /> </jats:inline-formula> production channels within different scenarios for the nonresonant total cross section of the elementary reaction <jats:inline-formula> <jats:tex-math><?CDATA ${\gamma}p \to {\Upsilon(1S)}p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M9.jpg" xlink:type="simple" /> </jats:inline-formula> and for branching ratios of the decays <jats:inline-formula> <jats:tex-math><?CDATA $P^+_b(11080) \to {\Upsilon(1S)}p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $P^+_b(11125) \to {\Upsilon(1S)}p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $P^+_b(11130) \to {\Upsilon(1S)}p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M12.jpg" xlink:type="simple" /> </jats:inline-formula>. We also calculate an analogous function for the photoproduction of <jats:inline-formula> <jats:tex-math><?CDATA $\Upsilon(1S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M13.jpg" xlink:type="simple" /> </jats:inline-formula> mesons on the <jats:sup>12</jats:sup>C and <jats:sup>208</jats:sup>Pb target nuclei in the near-threshold center-of-mass beam energy region of 9.0-11.4 GeV by considering the respective incoherent direct ( <jats:inline-formula> <jats:tex-math><?CDATA ${\gamma}N \to {\Upsilon(1S)}N$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M16.jpg" xlink:type="simple" /> </jats:inline-formula>) and two-step ( <jats:inline-formula> <jats:tex-math><?CDATA ${\gamma}p \to P^+_b(11080) \to {\Upsilon(1S)}p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M17.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA ${\gamma}p \to P^+_b(11125) \to {\Upsilon(1S)}p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M18.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA ${\gamma}p \to P^+_b(11130) \to {\Upsilon(1S)}p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M19.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA ${\gamma}n \to P^0_b$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M20.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ (11080) \to{\Upsilon(1S)}n $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M20-1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA ${\gamma}n \to P^0_b(11125) \to {\Upsilon(1S)}n$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M21.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA ${\gamma}n \to P^0_b(11130) \to {\Upsilon(1S)}n$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M22.jpg" xlink:type="simple" /> </jats:inline-formula>) <jats:inline-formula> <jats:tex-math><?CDATA $\Upsilon(1S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M23.jpg" xlink:type="simple" /> </jats:inline-formula>) production processes using a nuclear spectral function approach. We demonstrate that a detailed scan of the <jats:inline-formula> <jats:tex-math><?CDATA $\Upsilon(1S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M24.jpg" xlink:type="simple" /> </jats:inline-formula> total photoproduction cross section on proton and nuclear targets in the near-threshold energy region in future high-precision experiments at the proposed high-luminosity electron-ion colliders EIC and EicC in the US and China should provide a definite result for or against the existence of the nonstrange hidden-bottom pentaquark states <jats:inline-formula> <jats:tex-math><?CDATA $P_{bi}^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M25.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $P_{bi}^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M26.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $i$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104101_M27.jpg" xlink:type="simple" /> </jats:inline-formula>=1, 2, 3) as well as clarify their decay rates. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 104101
Calculations of the α-decay properties of Z = 120, 122, 124, 126 isotopes *
Zhishuai Ge; Gen Zhang; Shihui Cheng; Yu. S. Tsyganov; Feng-Shou Zhang
<jats:title>Abstract</jats:title> <jats:p>The <jats:italic>α</jats:italic>-decay properties of even-<jats:italic>Z</jats:italic> nuclei with <jats:italic>Z</jats:italic> = 120, 122, 124, 126 are predicted. We employ the generalized liquid drop model (GLDM), Royer's formula, and universal decay law (UDL) to calculate the <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M2.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-lives. By comparing the theoretical calculations with the experimental data of known nuclei from Fl to Og, we confirm that all the employed methods can reproduce the <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M3.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-lives well. The preformation factor <jats:inline-formula> <jats:tex-math><?CDATA $P_{\alpha}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M5.jpg" xlink:type="simple" /> </jats:inline-formula>-decay energy <jats:inline-formula> <jats:tex-math><?CDATA $Q_{\alpha}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M6.jpg" xlink:type="simple" /> </jats:inline-formula> show that <jats:inline-formula> <jats:tex-math><?CDATA $^{298,304,314,316,324,326,338,348}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M7.jpg" xlink:type="simple" /> </jats:inline-formula>120, <jats:inline-formula> <jats:tex-math><?CDATA $^{304,306,318,324,328,338}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M8.jpg" xlink:type="simple" /> </jats:inline-formula>122, and <jats:inline-formula> <jats:tex-math><?CDATA $^{328,332,340,344}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M9.jpg" xlink:type="simple" /> </jats:inline-formula>124 might be stable. The <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M10.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-lives show a peak at <jats:italic>Z</jats:italic> = 120, <jats:italic>N</jats:italic> = 184, and the peak vanishes when <jats:italic>Z</jats:italic> = 122, 124, 126. Based on detailed analysis of the competition between <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M11.jpg" xlink:type="simple" /> </jats:inline-formula>-decay and spontaneous fission, we predict that nuclei nearby <jats:italic>N</jats:italic> = 184 undergo <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M12.jpg" xlink:type="simple" /> </jats:inline-formula>-decay. The decay modes of <jats:inline-formula> <jats:tex-math><?CDATA $^{287-339}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M13.jpg" xlink:type="simple" /> </jats:inline-formula>120, <jats:inline-formula> <jats:tex-math><?CDATA $^{294-339}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M14.jpg" xlink:type="simple" /> </jats:inline-formula>122, <jats:inline-formula> <jats:tex-math><?CDATA $^{300-339}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M15.jpg" xlink:type="simple" /> </jats:inline-formula>124, and <jats:inline-formula> <jats:tex-math><?CDATA $^{306-339}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104102_M16.jpg" xlink:type="simple" /> </jats:inline-formula>126 are also presented. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 104102
New measurements and reanalysis of 14N elastic scattering on 10B target *
Marzhan Nassurlla; N. Burtebayev; T. Kh. Sadykov; I. Boztosun; N. Amangeldi; D. Alimov; Zh. Kerimkulov; J. Burtebayeva; Maulen Nassurlla; A. Kurakhmedov; S.B. Sakuta; Mesut Karakoc; Awad A. Ibraheem; K.W. Kemper; Sh. Hamada
<jats:title>Abstract</jats:title> <jats:p>The angular distributions of elastic scattering of <jats:sup>14</jats:sup>N ions on <jats:sup>10</jats:sup>B targets have been measured at incident beam energies of 21.0 and 24.5 MeV. Angular distributions at higher energies 38–94.0 MeV (previously measured) were also included in the analysis. All data were analyzed within the framework of the optical model and the distorted waves Born approximation method. The observed rise in cross sections at large angles was interpreted as a possible contribution of the α-cluster exchange mechanism. Spectroscopic amplitudes <jats:italic>SA</jats:italic> <jats:sub>2</jats:sub> and <jats:italic>SA</jats:italic> <jats:sub>4</jats:sub> for the configuration <jats:sup>14</jats:sup>N→ <jats:sup>10</jats:sup>B +<jats:italic>α</jats:italic> were extracted. Their average values are 0.58±0.10 and 0.81±0.12 for <jats:italic>SA</jats:italic> <jats:sub>2</jats:sub> and <jats:italic>SA</jats:italic> <jats:sub>4</jats:sub>, respectively, suggesting that the exchange mechanism is a major component of the elastic scattering for this system. The energy dependence of the depths for the real and imaginary potentials was found. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 104103
S wave resonance *
H. Garcilazo; A. Valcarce
<jats:title>Abstract</jats:title> <jats:p>We use an existing model of the <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda\Lambda N - \Xi NN $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M2.jpg" xlink:type="simple" /> </jats:inline-formula> three-body system based on two-body separable interactions to study the <jats:inline-formula> <jats:tex-math><?CDATA $ (I,J^P) = (1/2,1/2^+) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> three-body channel. For the <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda\Lambda $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi N $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda\Lambda - \Xi N $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M6.jpg" xlink:type="simple" /> </jats:inline-formula> amplitudes, we have constructed separable potentials based on the most recent results of the HAL QCD Collaboration. They are characterized by the existence of a resonance just below or above the <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi N $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M7.jpg" xlink:type="simple" /> </jats:inline-formula> threshold in the <jats:italic>H</jats:italic>-dibaryon channel, <jats:inline-formula> <jats:tex-math><?CDATA $ (i,j^p) = (0,0^+) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M8.jpg" xlink:type="simple" /> </jats:inline-formula>. A three-body resonance appears 2.3 MeV above the <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi d $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M9.jpg" xlink:type="simple" /> </jats:inline-formula> threshold. We show that if the <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda\Lambda - \Xi N $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M10.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:italic>H</jats:italic>-dibaryon channel is not considered, the <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda\Lambda N - \Xi NN $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M11.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:italic>S</jats:italic> wave resonance disappears. Thus, the possible existence of a <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda\Lambda N - \Xi NN $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M12.jpg" xlink:type="simple" /> </jats:inline-formula> resonance would be sensitive to the <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda\Lambda - \Xi N $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M13.jpg" xlink:type="simple" /> </jats:inline-formula> interaction. The existence or nonexistence of this resonance could be evidenced by measuring, for example, the <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi d $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104104_M14.jpg" xlink:type="simple" /> </jats:inline-formula> cross section. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 104104
Transverse momentum balance and angular distribution of dijets in Pb + Pb collisions *
Wei Dai; Sa Wang; Shan-Liang Zhang; Ben-Wei Zhang; Enke Wang
<jats:title>Abstract</jats:title> <jats:p>In this study, the production of inclusive <jats:italic>b</jats:italic>-jet and <jats:inline-formula> <jats:tex-math><?CDATA $b\bar{b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M2.jpg" xlink:type="simple" /> </jats:inline-formula> dijets in Pb + Pb collisions has been investigated by considering the in-medium evolution of heavy and light quarks simultaneously. The initial hard processes of inclusive <jats:italic>b</jats:italic>-jet and <jats:inline-formula> <jats:tex-math><?CDATA $b\bar{b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M3.jpg" xlink:type="simple" /> </jats:inline-formula> dijets production are described using a next-to-leading order (NLO) plus parton shower Monte Carlo (MC) event generator, SHERPA, which can be well matched with the experimental data in p + p collisions. The framework uses the Langevin transport model to describe the evolution of the bottom quark. Furthermore, the collisional energy loss and higher-twist description are considered to determine the radiative energy loss from both the bottom and light quarks. We compare the theoretical simulation of the inclusive jet and <jats:italic>b</jats:italic>-jet <jats:inline-formula> <jats:tex-math><?CDATA $R_{\rm AA}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M4.jpg" xlink:type="simple" /> </jats:inline-formula> in the Pb + Pb collisions at <jats:inline-formula> <jats:tex-math><?CDATA $\sqrt{s_{ NN}}=2.76$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M5.jpg" xlink:type="simple" /> </jats:inline-formula> TeV with the experimental data and present the theoretical simulation of the momentum balance of the <jats:inline-formula> <jats:tex-math><?CDATA $b\bar{b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M6.jpg" xlink:type="simple" /> </jats:inline-formula> dijet in the Pb + Pb collisions at <jats:inline-formula> <jats:tex-math><?CDATA $5.02$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M7.jpg" xlink:type="simple" /> </jats:inline-formula> TeV along with recent CMS data for the first time. A similar trend to that seen in inclusive dijets is observed in <jats:inline-formula> <jats:tex-math><?CDATA $b\bar{b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M8.jpg" xlink:type="simple" /> </jats:inline-formula> dijets; the distribution of the production shifts to smaller <jats:inline-formula> <jats:tex-math><?CDATA $x_{\rm J}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M9.jpg" xlink:type="simple" /> </jats:inline-formula> owing to the jet quenching effect. Finally, we report the prediction of the normalized azimuthal angle distribution of the <jats:inline-formula> <jats:tex-math><?CDATA $b\bar{b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M10.jpg" xlink:type="simple" /> </jats:inline-formula> dijet in the Pb + Pb collisions at <jats:inline-formula> <jats:tex-math><?CDATA $5.02$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M11.jpg" xlink:type="simple" /> </jats:inline-formula> TeV. The medium-induced energy loss effect of the <jats:inline-formula> <jats:tex-math><?CDATA $b\bar{b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M12.jpg" xlink:type="simple" /> </jats:inline-formula> dijets will generally suppress its production; however, the same side ( <jats:inline-formula> <jats:tex-math><?CDATA $\Delta \phi \to 0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M13.jpg" xlink:type="simple" /> </jats:inline-formula> region) suffers more energy loss than the far side ( <jats:inline-formula> <jats:tex-math><?CDATA $\Delta \phi \to \pi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104105_M14.jpg" xlink:type="simple" /> </jats:inline-formula> region), thus leading to suppression on the same side and enhancement on the far side in the normalized azimuthal angle distribution in A + A collisions. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 104105
Massless limit of transport theory for massive Fermions *
Xingyu Guo
<jats:title>Abstract</jats:title> <jats:p>We studied the <jats:italic>m</jats:italic> = 0 limit of different components of Wigner functions for massive fermions. Comparing with the chiral kinetic theory, we separated the vanishing and non-vanishing parts of vector and axial-vector components, up to the first order of <jats:inline-formula> <jats:tex-math><?CDATA $ \hbar $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_104106_M2.jpg" xlink:type="simple" /> </jats:inline-formula>. Then, we discussed the possible physical meaning of the vanishing and non-vanishing parts and their different behaviors at thermal equilibrium. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 104106
Quantum ekpyrotic mechanism in Fermi-bounce curvaton cosmology *
Andrea Addazi; Antonino Marciano
<jats:title>Abstract</jats:title> <jats:p>Within the context of the Fermi-bounce curvaton mechanism, we analyze the one-loop radiative corrections to the four-fermion interaction, generated by the non-dynamical torsion field in the Einstein-Cartan-Holst-Sciama-Kibble theory. We show that contributions that arise from the one-loop radiative corrections modify the energy-momentum tensor, <jats:italic>mimicking</jats:italic> an effective Ekpyrotic fluid contribution. Therefore, we call this effect <jats:italic>quantum Ekpyrotic</jats:italic> mechanism. This leads to the dynamical washing out of anisotropic contributions to the energy-momentum tensor, without introducing any new extra Ekpyrotic fluid. We discuss the stability of the bouncing mechanism and derive the renormalization group flow of the dimensional coupling constant <jats:italic>ξ</jats:italic>, checking whether any change of its sign takes place towards the bounce. This enforces the theoretical motivations in favor of the torsion curvaton bounce cosmology as an alternative candidate to the inflation paradigm. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 105101
Durgapal IV model considering the minimal geometric deformation approach
Francisco Tello-Ortiz; Ángel Rincón; Piyali Bhar; Y. Gomez-Leyton
<jats:title>Abstract</jats:title> <jats:p>The present article reports the study of local anisotropic effects on Durgapal's fourth model in the context of gravitational decoupling via the minimal geometric deformation approach. To achieve this, the most general equation of state relating the components of the <jats:italic>θ</jats:italic>−sector is imposed to obtain the decoupler function <jats:inline-formula> <jats:tex-math><?CDATA $f(r)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105102_M2.jpg" xlink:type="simple" /> </jats:inline-formula>. In addition, certain properties of the obtained solution, such as the behavior of the salient material content threading the stellar interior; causality and energy conditions; hydrostatic balance through the modified Tolman−Oppenheimer−Volkoff conservation equation and stability mechanism against local anisotropies using the adiabatic index; sound velocity of the pressure waves; convection factor; and the Harrison−Zeldovich−Novikov procedure, are investigated to check whether the model is physically admissible or not. Regarding the stability analysis, it is found that the model presents unstable regions when the sound speed of the pressure waves and convection factor are used in distinction with the adiabatic index and Harrison−Zeldovich−Novikov case. To produce a more realistic picture, the numerical data for some known compact objects were determined and different values of the parameter <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> were considered to compare with the GR case, i.e., <jats:inline-formula> <jats:tex-math><?CDATA $\alpha=0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_10_105102_M4.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 105102
Multi-pole dark energy *
Chao-Jun Feng; Xiang-Hua Zhai; Xin-Zhou Li
<jats:title>Abstract</jats:title> <jats:p>A scalar field with a pole in its kinetic term is often used to study cosmological inflation; it can also play the role of dark energy, which is called the pole dark energy model. We propose a generalized model where the scalar field may have two or even multiple poles in the kinetic term, and we call it the multi-pole dark energy. We find that the poles can place some restrictions on the values of the original scalar field with a non-canonical kinetic term. After the transformation to the canonical form, we get a flat potential for the transformed scalar field even if the original field has a steep one. The late-time evolution of the universe is obtained explicitly for the two pole model, while dynamical analysis is performed for the multiple pole model. We find that it does have a stable attractor solution, which corresponds to the universe dominated by the potential of the scalar field.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 105103