Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Study of lepton EDMs in the U(1) X SSM *

Lu-Hao Su; Dan He; Xing-Xing Dong; Tai-Fu Feng; Shu-Min Zhao

<jats:title>Abstract</jats:title> <jats:p>The minimal supersymmetric extension of the standard model (MSSM) is extended to the <jats:inline-formula> <jats:tex-math><?CDATA $ U(1)_X $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093103_M1.jpg" xlink:type="simple" /> </jats:inline-formula>SSM, whose local gauge group is <jats:inline-formula> <jats:tex-math><?CDATA $S U(3)_C \times S U(2)_L \times U(1)_Y \times U(1)_X$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093103_M2.jpg" xlink:type="simple" /> </jats:inline-formula>. To obtain the <jats:inline-formula> <jats:tex-math><?CDATA $ U(1)_X $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093103_M3.jpg" xlink:type="simple" /> </jats:inline-formula>SSM, we add new superfields to the MSSM, namely, three Higgs singlets <jats:inline-formula> <jats:tex-math><?CDATA $ \hat{\eta},\; \hat{\bar{\eta}},\; \hat{S} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and right-handed neutrinos <jats:inline-formula> <jats:tex-math><?CDATA $ \hat{\nu}_i $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093103_M5.jpg" xlink:type="simple" /> </jats:inline-formula>. The charge conjugate and parity (<jats:italic>CP)</jats:italic> violating effects are considered to study the lepton electric dipole moment (EDM) in the <jats:inline-formula> <jats:tex-math><?CDATA $ U(1)_X $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093103_M6.jpg" xlink:type="simple" /> </jats:inline-formula>SSM. There are more <jats:italic>CP</jats:italic> violating phases in the <jats:inline-formula> <jats:tex-math><?CDATA $ U(1)_X $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093103_M7.jpg" xlink:type="simple" /> </jats:inline-formula>SSM than in the standard model (SM). In this model, several new parameters <jats:inline-formula> <jats:tex-math><?CDATA $ (\theta_S, \theta_{BB^{\prime}}, \theta_{BL}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093103_M8.jpg" xlink:type="simple" /> </jats:inline-formula> are considered as <jats:italic>CP</jats:italic> violating phases; hence, there are new contributions to lepton EDMs. This is conducive to exploring the source of <jats:italic>CP</jats:italic> violation and probing new physics beyond the SM. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093103

Alphabet of one-loop Feynman integrals *

Jiaqi Chen; Chichuan Ma; Li Lin Yang

<jats:title>Abstract</jats:title> <jats:p>In this paper, we present the universal structure of the alphabet of one-loop Feynman integrals. The letters in the alphabet are calculated using the Baikov representation with cuts. We consider both convergent and divergent cut integrals and observe that letters in the divergent cases can be easily obtained from convergent cases by applying certain limits. The letters are written as simple expressions in terms of various Gram determinants. The knowledge of the alphabet enables us to easily construct the canonical differential equations of the <jats:inline-formula> <jats:tex-math><?CDATA $ d\log $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093104_M1.jpg" xlink:type="simple" /> </jats:inline-formula> form and aids in bootstrapping the symbols of the solutions. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093104

Hidden-charm pentaquark states through current algebra: from their production to decay *

Hua-Xing Chen

<jats:title>Abstract</jats:title> <jats:p>There may be seven <jats:inline-formula> <jats:tex-math><?CDATA $ \bar D^{(*)} \Sigma_c^{(*)} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093105_M1.jpg" xlink:type="simple" /> </jats:inline-formula> hadronic molecular states. We construct their corresponding interpolating currents and calculate their masses and decay constants using QCD sum rules. Based on these results, we calculate their relative production rates in <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_b^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093105_M2.jpg" xlink:type="simple" /> </jats:inline-formula> decays using current algebra, that is, <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{B}}(\Lambda_b^0 \to P_c K^-):{\cal{B}}(\Lambda_b^0 \to P_c^\prime K^-) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093105_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, where <jats:inline-formula> <jats:tex-math><?CDATA $ P_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093105_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ P_c^\prime $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093105_M5.jpg" xlink:type="simple" /> </jats:inline-formula> are two different states. We also study their decay properties via Fierz rearrangement and further calculate these ratios in the <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi p $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093105_M6.jpg" xlink:type="simple" /> </jats:inline-formula> mass spectrum, that is, <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{B}}(\Lambda_b^0 \to P_c K^- \to J/\psi p K^-):{\cal{B}}(\Lambda_b^0 \to P_c^\prime K^- \to J/\psi p K^-) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093105_M7.jpg" xlink:type="simple" /> </jats:inline-formula>. Our results suggest that the <jats:inline-formula> <jats:tex-math><?CDATA $ \bar D^{*} \Sigma_c^{*} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093105_M8.jpg" xlink:type="simple" /> </jats:inline-formula> molecular states of <jats:inline-formula> <jats:tex-math><?CDATA $ J^P = 1/2^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093105_M9.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ 3/2^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093105_M10.jpg" xlink:type="simple" /> </jats:inline-formula> may be observed in future experiments. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093105

Forward-backward asymmetries in in the Bethe-Salpeter equation approach *

Liang-Liang Liu; Su-Jun Cui; Jing Xu; Xin-Heng Guo

<jats:title>Abstract</jats:title> <jats:p>Using the Bethe-Salpeter equation (BSE), we investigate the forward-backward asymmetries <jats:inline-formula> <jats:tex-math><?CDATA $ (A _{\rm FB}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093106_M2.jpg" xlink:type="simple" /> </jats:inline-formula> in <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_b \rightarrow \Lambda l^+ l^-(l=e,\mu,\tau) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093106_M3.jpg" xlink:type="simple" /> </jats:inline-formula> in the quark-diquark model. This approach provides precise form factors that are different from those of quantum chromodynamics (QCD) sum rules. We calculate the rare decay form factors for <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_b \rightarrow \Lambda l^+ l^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093106_M4.jpg" xlink:type="simple" /> </jats:inline-formula>b and investigate the (integrated) forward-backward asymmetries in these decay channels. We observe the integrated <jats:inline-formula> <jats:tex-math><?CDATA $ A^l_{\rm FB} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093106_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{A}^l_{\rm FB}(\Lambda_b \rightarrow $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093106_M6.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda e^+ e^-) \simeq -0.1371 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093106_M6-1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{A}^l_{\rm FB}(\Lambda_b \rightarrow \Lambda \mu^+ \mu^-) \simeq -0.1376 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093106_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{A}^l_{\rm FB}(\Lambda_b \rightarrow \Lambda \tau^+ \tau^-) \simeq $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093106_M8.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ -0.1053 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093106_M8-1.jpg" xlink:type="simple" /> </jats:inline-formula>; the hadron side asymmetries <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{A}^h_{\rm FB}(\Lambda_b \rightarrow \Lambda \mu^+ \mu^-)\simeq -0.2315 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093106_M9.jpg" xlink:type="simple" /> </jats:inline-formula>; the lepton-hadron side asymmetries <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{A}^{lh}_{\rm FB}(\Lambda_b \rightarrow \Lambda \mu^+ \mu^-)\simeq 0.0827 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093106_M10.jpg" xlink:type="simple" /> </jats:inline-formula>; and the longitudinal polarization fractions <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{F}_L(\Lambda_b \rightarrow \Lambda \mu^+ \mu^-)\simeq 0.5681 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093106_M11.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093106

Muon anomalous magnetic dipole moment in the μ νSSM *

Hai-Bin Zhang; Chang-Xin Liu; Jin-Lei Yang; Tai-Fu Feng

<jats:title>Abstract</jats:title> <jats:p>Recently, the Muon <jats:italic>g</jats:italic>-2 experiment at Fermilab measured the muon anomalous magnetic dipole moment (MDM), <jats:inline-formula> <jats:tex-math><?CDATA $ a_\mu=(g_\mu-2)/2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093107_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, and reported that the new experimental average increases the difference between the experiment and the standard model (SM) prediction to 4.2<jats:italic>σ</jats:italic>. In this work, we reanalyze the muon anomalous MDM at the two-loop level in the <jats:italic>μ</jats:italic> from the <jats:italic>ν</jats:italic> Supersymmetric Standard Model ( <jats:inline-formula> <jats:tex-math><?CDATA $ \mu\nu $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093107_M2.jpg" xlink:type="simple" /> </jats:inline-formula>SSM) combined with the updated experimental average. The <jats:inline-formula> <jats:tex-math><?CDATA $ \mu\nu $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093107_M3.jpg" xlink:type="simple" /> </jats:inline-formula>SSM can explain the current difference between the experimental measurement and the SM theoretical prediction for the muon anomalous MDM, constrained by the 125 GeV Higgs boson mass and decays, the rare decay <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{B}\rightarrow X_s\gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093107_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, and so on. We also investigate the anomalous MDM of the electron and tau lepton, <jats:inline-formula> <jats:tex-math><?CDATA $ a_e=(g_e-2)/2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093107_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ a_\tau=(g_\tau-2)/2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093107_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, at the two-loop level in the <jats:inline-formula> <jats:tex-math><?CDATA $ \mu\nu $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093107_M7.jpg" xlink:type="simple" /> </jats:inline-formula>SSM. In addition, the decaying of the 125 GeV Higgs boson into a pair of charged leptons in the <jats:inline-formula> <jats:tex-math><?CDATA $ \mu\nu $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093107_M8.jpg" xlink:type="simple" /> </jats:inline-formula>SSM is analyzed. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093107

Final bound-state formation effect on dark matter annihilation *

Xinyu Wang; Fucheng Zhong; Feng Luo

<jats:title>Abstract</jats:title> <jats:p>If two annihilation products of dark matter (DM) particles are non-relativistic and couple to a light force mediator, their plane wave functions are modified due to multiple exchanges of the force mediator. This gives rise to the final state Sommerfeld (FSS) effect. It is also possible that the final state particles form a bound state. Both the FSS effect and final bound-state (FBS) effect need to be considered in the calculation of the DM relic abundance. The annihilation products can be non-relativistic if their masses are comparable to those of the annihilating DM particles. We study the FSS and FBS effects in the mass-degenerate region using two specific models. Both models serve to illustrate different partial-wave contributions in the calculations of the FSS and FBS effects. We find that the FBS effect can be comparable to the FSS effect when the annihilation products couple strongly with a light force mediator. Those effects significantly modify the DM relic abundance.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093108

Study of the rare decay at the BESIII *

Feng Zhang; Jian-Xiong Wang

<jats:title>Abstract</jats:title> <jats:p>The two-photon radiative decay process <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi \to 2\gamma+hadrons $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093109_M2.jpg" xlink:type="simple" /> </jats:inline-formula> was studied, and the main contribution processes, <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi \to 2\gamma + g g g $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093109_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi \to 2\gamma + q \bar{q} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093109_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, were calculated. With the specific conditions at the BESIII, this rare decay process and the main background process <jats:inline-formula> <jats:tex-math><?CDATA $ e^{+} e^{-} \to \gamma \gamma + hadrons (q \bar{q}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093109_M5.jpg" xlink:type="simple" /> </jats:inline-formula>were investigated. The results show that the ratio of signal to background can reach 1.24 with optimized selection criteria at the BESIII. In addition, distributions of the signal and background are presented. All the results show that the signal is large enough to be experimentally measured. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093109