Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Calculations of differential momentum transfer spectra for J/ψ photoproduction in heavy-ion collisions *
Pengfei Wang; Xin Wu; Wangmei Zha; Zebo Tang
<jats:title>Abstract</jats:title> <jats:p>Understanding the gluonic structure in nuclei is one of the most important goals in modern nuclear physics, for which <jats:italic>J</jats:italic>/<jats:italic>ψ</jats:italic> photoproduction is suggested as a powerful tool to probe the gluon density distribution. The experimental investigation of the photoproduction process is conventionally studied in ultra-peripheral heavy-ion collisions, and has recently been extended to hadronic collisions. However, theoretical efforts in hadronic heavy-ion collisions are still lacking in the literature. In this paper, we build up a phenomenological framework to calculate the differential momentum transfer spectra for <jats:italic>J</jats:italic>/<jats:italic>ψ</jats:italic> photoproduction in hadronic heavy-ion collisions based on a vector meson dominance model. For the first time, we include the effect of internal photon radiation in the calculations, and we find that the results with internal photon radiation could describe the experimental measurements from STAR very well. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074103
Precise machine learning models for fragment production in projectile fragmentation reactions using Bayesian neural networks *
Chun-Wang Ma; Xiao-Bao Wei; Xi-Xi Chen; Dan Peng; Yu-Ting Wang; Jie Pu; Kai-Xuan Cheng; Ya-Fei Guo; Hui-Ling Wei
<jats:title>Abstract</jats:title> <jats:p>Machine learning models are constructed to predict fragment production cross sections in projectile fragmentation (PF) reactions using Bayesian neural network (BNN) techniques. The massive learning for BNN models is based on 6393 fragments from 53 measured projectile fragmentation reactions. A direct BNN model and physical guiding BNN via FRACS parametrization (BNN + FRACS) model have been constructed to predict the fragment cross section in projectile fragmentation reactions. It is verified that the BNN and BNN + FRACS models can reproduce a wide range of fragment productions in PF reactions with incident energies from 40 MeV/u to 1 GeV/u, reaction systems with projectile nuclei from <jats:sup>40</jats:sup>Ar to <jats:sup>208</jats:sup>Pb, and various target nuclei. The high precision of the BNN and BNN + FRACS models makes them applicable for the low production rate of extremely rare isotopes in future PF reactions with large projectile nucleus asymmetry in the new generation of radioactive nuclear beam factories. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074104
Improved phenomenological nuclear charge radius formulae with kernel ridge regression *
Jian-Qin Ma; Zhen-Hua Zhang
<jats:title>Abstract</jats:title> <jats:p>The kernel ridge regression (KRR) method with a Gaussian kernel is used to improve the description of the nuclear charge radius by several phenomenological formulae. The widely used <jats:inline-formula> <jats:tex-math><?CDATA $ A^{1/3} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074105_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ N^{1/3} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074105_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ Z^{1/3} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074105_M3.jpg" xlink:type="simple" /> </jats:inline-formula> formulae, and their improved versions including isospin dependence, are adopted as examples. The parameters in these six formulae are refitted using the Levenberg–Marquardt method, which give better results than the previous versions. The radius for each nucleus is predicted with the KRR network, which is trained with the deviations between experimental and calculated nuclear charge radii. For each formula, the resultant root-mean-square deviations of 884 nuclei with proton number <jats:inline-formula> <jats:tex-math><?CDATA $ Z \geq 8 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074105_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and neutron number <jats:inline-formula> <jats:tex-math><?CDATA $ N \geq 8 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074105_M5.jpg" xlink:type="simple" /> </jats:inline-formula> can be reduced to about 0.017 fm after considering the modification by the KRR method. The extrapolation ability of the KRR method for the neutron-rich region is examined carefully and compared with the radial basis function method. It is found that the improved nuclear charge radius formulae using the KRR method can avoid the risk of overfitting, and have a good extrapolation ability. The influence of the ridge penalty term on the extrapolation ability of the KRR method is also discussed. Finally, the nuclear charge radii of several recently observed K and Ca isotopes are analyzed. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074105
Possible shape coexistence in odd-A Ne isotopes and the impurity effects of Λ hyperons *
Qian-Kun Sun; Ting-Ting Sun; Wei Zhang; Shi-Sheng Zhang; Chen Chen
<jats:title>Abstract</jats:title> <jats:p>In this study, shape evolution and possible shape coexistence are explored in odd-<jats:italic>A</jats:italic> Ne isotopes in the framework of the multidimensionally constrained relativistic-mean-field (MDC-RMF) model. By introducing <jats:inline-formula> <jats:tex-math><?CDATA $ s_\Lambda $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074106_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ p_{\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074106_M2.jpg" xlink:type="simple" /> </jats:inline-formula> hyperons, the impurity effects on the nuclear shape, energy, size, and density distribution are investigated. For the <jats:inline-formula> <jats:tex-math><?CDATA $ NN $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074106_M3.jpg" xlink:type="simple" /> </jats:inline-formula> interaction, the PK1 parameter set is adopted, and for the <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda N $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074106_M4.jpg" xlink:type="simple" /> </jats:inline-formula> interaction, the PK1-Y1 parameter set is used. The nuclear ground state and low-lying excited states are determined by blocking the unpaired odd neutron in different orbitals around the Fermi surface. Moreover, the potential energy curves (PECs), quadrupole deformations, nuclear r.m.s. radii, binding energies, and density distributions for the core nuclei as well as the corresponding hypernuclei are analyzed. By examining the PECs, possibilities for shape coexistence in <jats:inline-formula> <jats:tex-math><?CDATA $ ^{27,29} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074106_M5.jpg" xlink:type="simple" /> </jats:inline-formula>Ne and a triple shape coexistence in <jats:sup>31</jats:sup>Ne are found. In terms of the impurity effects of Λ hyperons, as noted for even-even Ne hypernuclear isotopes, the <jats:inline-formula> <jats:tex-math><?CDATA $ s_{\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074106_M6.jpg" xlink:type="simple" /> </jats:inline-formula> hyperon exhibits a clear shrinkage effect, which reduces the nuclear size and results in a more spherical nuclear shape. The <jats:inline-formula> <jats:tex-math><?CDATA $ p_{\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074106_M7.jpg" xlink:type="simple" /> </jats:inline-formula> hyperon occupying the <jats:inline-formula> <jats:tex-math><?CDATA $ 1/2^-[110] $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074106_M8.jpg" xlink:type="simple" /> </jats:inline-formula> orbital is prolate, which causes the nuclear shape to be more prolate, and the <jats:inline-formula> <jats:tex-math><?CDATA $ p_{\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074106_M9.jpg" xlink:type="simple" /> </jats:inline-formula> hyperon occupying the <jats:inline-formula> <jats:tex-math><?CDATA $ 3/2^-[101] $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074106_M10.jpg" xlink:type="simple" /> </jats:inline-formula> orbital displays an oblate shape, which drives the nuclei to be more oblate. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074106
Possible existence of chiral and multiple chiral nuclei in thallium isotopes *
Rui-Ju Guo; Xiao Lu; Bin Qi; Chen Liu; Shou-Yu Wang
<jats:title>Abstract</jats:title> <jats:p>The chirality in thallium isotopes is investigated using the adiabatic and configuration-fixed constrained triaxial relativistic mean field theory. Several minima with prominent triaxial deformation and proper configuration, where the chiral doublet bands may appear, are obtained in odd-odd nuclei <jats:inline-formula> <jats:tex-math><?CDATA $ ^{192,194,196,198} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074107_M1.jpg" xlink:type="simple" /> </jats:inline-formula>Tl and odd-mass nuclei <jats:inline-formula> <jats:tex-math><?CDATA $ ^{193,195,197} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074107_M2.jpg" xlink:type="simple" /> </jats:inline-formula>Tl. Furthermore, the possible existence of multiple chiral doublet bands (M<jats:italic>χ</jats:italic>D) is demonstrated in <jats:inline-formula> <jats:tex-math><?CDATA $ ^{192,193,194,195,196,197,198} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074107_M3.jpg" xlink:type="simple" /> </jats:inline-formula>Tl. As the chiral doublet bands in <jats:inline-formula> <jats:tex-math><?CDATA $ ^{193,194,198} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074107_M4.jpg" xlink:type="simple" /> </jats:inline-formula>Tl and M<jats:italic>χ</jats:italic>D in <jats:sup>195</jats:sup>Tl have been observed experimentally, further experimental exploration for the chirality in <jats:inline-formula> <jats:tex-math><?CDATA $ ^{192,196,197} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074107_M5.jpg" xlink:type="simple" /> </jats:inline-formula>Tl and M<jats:italic>χ</jats:italic>D in thallium isotopes is expected to verify the predictions. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074107
Target dependence of isotopic cross sections in the spallation reactions 238U + p, d and 9Be at 1 AGeV *
Qu-Fei Song; Long Zhu; Jun Su
<jats:title>Abstract</jats:title> <jats:p>The spallation of <jats:sup>238</jats:sup>U is an important way to produce rare isotopes. This work aims at studying the cross sections of isotopes produced in <jats:sup>238</jats:sup>U + <jats:italic>p</jats:italic>, <jats:italic>d</jats:italic> and <jats:sup>9</jats:sup>Be reactions at 1 <jats:italic>A</jats:italic> GeV and their target dependence. (1) A physical model dependent (Bayesian neural network) BNN, which includes the details of IQMD-GEMINI++ model and BNN, was developed for a more accurate evaluation of production cross sections. The isospin-dependent quantum molecular dynamics (IQMD) model is used to study the non-equilibrium thermalization of the <jats:sup>238</jats:sup>U nuclei and fragmentation of the hot system. The subsequent decay of the pre-fragments is simulated by the GEMINI++ model. The BNN algorithm is used to improve the prediction accuracy after learning the residual error between experimental data and calculations by the IQMD-GEMINI++ model. It is shown that the IQMD-GEMINI++ model can reproduce the available experimental data (3282 points) within 1.5 orders of magnitude. After being fine tuned by the BNN algorithm, the deviation between calculations and experimental data were reduced to within 0.4 order of magnitude. (2) Based on the predictions by the IQMD-GEMINI++-BNN framework, the target dependence of isotopic cross sections was studied. The cross sections to produce the rare isotopes by the <jats:sup>238</jats:sup>U + <jats:italic>p</jats:italic>, <jats:italic>d</jats:italic> and <jats:sup>9</jats:sup>Be reactions at 1 <jats:italic>A</jats:italic> GeV are compared. For the generation of neutron-rich fission products, the cross sections for the <jats:sup>238</jats:sup>U + <jats:sup>9</jats:sup>Be are the largest. For the generation of neutron-deficient nuclei in the region of <jats:italic>A</jats:italic> = 200–220, the cross sections for <jats:sup>238</jats:sup>U + <jats:italic>p</jats:italic> reaction are the largest. Considering the largest cross sections and the atomic density, the beryllium target is recommended to produce the neutron-rich fission products by the <jats:sup>238</jats:sup>U beam at 1 <jats:italic>A</jats:italic> GeV, while the liquid-hydrogen target is suggested to produce the neutron-deficient nuclei in the region of <jats:italic>A</jats:italic> <jats:italic /> = 200–220. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074108
Beyond-mean-field study of Ar based on the Skyrme-Hartree-Fock model *
Ji-Wei Cui; Ruizhe Wang; Xian-Rong Zhou
<jats:title>Abstract</jats:title> <jats:p>We present the hypernuclear states of <jats:inline-formula> <jats:tex-math><?CDATA $ ^{37}_{\; {\Lambda}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M2.jpg" xlink:type="simple" /> </jats:inline-formula>Ar obtained using the Skyrme-Hartree-Fock (SHF) model and a beyond-mean-field approach, including angular momentum projection (AMP) and the generator coordinate method (GCM). A comprehensive energy spectrum is given, which includes normally deformed (ND) and super deformed (SD) hypernuclear states with positive or negative parities. Energy levels corresponding to the configurations in which a <jats:inline-formula> <jats:tex-math><?CDATA $ {\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M3.jpg" xlink:type="simple" /> </jats:inline-formula> hyperon occupies the <jats:italic>s</jats:italic>-, <jats:italic>p</jats:italic>-, or <jats:italic>sd</jats:italic>-shell orbitals are discussed. For the <jats:italic>s</jats:italic>-shell <jats:inline-formula> <jats:tex-math><?CDATA $ {\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, we pay special attention to the ND and SD states corresponding to the configurations <jats:inline-formula> <jats:tex-math><?CDATA $ ^{36} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M5.jpg" xlink:type="simple" /> </jats:inline-formula>Ar <jats:inline-formula> <jats:tex-math><?CDATA $^{{\rm{N}}} \otimes$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M6.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:italic>s</jats:italic> <jats:inline-formula> <jats:tex-math><?CDATA $ _{\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ ^{36} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M8.jpg" xlink:type="simple" /> </jats:inline-formula>Ar <jats:inline-formula> <jats:tex-math><?CDATA $^{{\rm{S}}} \otimes$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M9.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:italic>s</jats:italic> <jats:inline-formula> <jats:tex-math><?CDATA $ _{\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, where <jats:inline-formula> <jats:tex-math><?CDATA $ ^{36} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M11.jpg" xlink:type="simple" /> </jats:inline-formula>Ar <jats:inline-formula> <jats:tex-math><?CDATA $ ^{{\rm{N}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M12.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ ^{36} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M13.jpg" xlink:type="simple" /> </jats:inline-formula>Ar <jats:inline-formula> <jats:tex-math><?CDATA $ ^{{\rm{S}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M14.jpg" xlink:type="simple" /> </jats:inline-formula> denote the ND and SD nuclear cores, respectively. The disagreements between different models over the <jats:inline-formula> <jats:tex-math><?CDATA $ {\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M15.jpg" xlink:type="simple" /> </jats:inline-formula> separation energy of the SD state in previous studies are revisited. For the <jats:italic>p</jats:italic>-shell <jats:inline-formula> <jats:tex-math><?CDATA $ {\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M16.jpg" xlink:type="simple" /> </jats:inline-formula>, four rotational bands are predicted, and the impurity effects are shown. Furthermore, two energy levels corresponding to the configurations <jats:inline-formula> <jats:tex-math><?CDATA $ ^{36} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M17.jpg" xlink:type="simple" /> </jats:inline-formula>Ar <jats:inline-formula> <jats:tex-math><?CDATA $^{{\rm{S}}} \otimes {\Lambda}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M18.jpg" xlink:type="simple" /> </jats:inline-formula>[101] <jats:inline-formula> <jats:tex-math><?CDATA $\frac{3}{2}^{-}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M19.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ ^{36} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M20.jpg" xlink:type="simple" /> </jats:inline-formula>Ar <jats:inline-formula> <jats:tex-math><?CDATA $^{{\rm{S}}} \otimes {\Lambda}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M21.jpg" xlink:type="simple" /> </jats:inline-formula>[101] <jats:inline-formula> <jats:tex-math><?CDATA $\frac{1}{2}^{-}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M22.jpg" xlink:type="simple" /> </jats:inline-formula> are obtained below the separation threshold of <jats:inline-formula> <jats:tex-math><?CDATA $ ^{36} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M23.jpg" xlink:type="simple" /> </jats:inline-formula>Ar+ <jats:inline-formula> <jats:tex-math><?CDATA $ {\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M24.jpg" xlink:type="simple" /> </jats:inline-formula> within 0.5 MeV. For the <jats:italic>sd</jats:italic>-shell <jats:inline-formula> <jats:tex-math><?CDATA $ {\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074109_M25.jpg" xlink:type="simple" /> </jats:inline-formula>, three bound states are found near the separation threshold, and the mechanism behind these states are discussed. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074109
Determination of the impact parameter in high-energy heavy-ion collisions via deep learning *
Pei Xiang; Yuan-Sheng Zhao; Xu-Guang Huang
<jats:title>Abstract</jats:title> <jats:p>In this study, Au+Au collisions with an impact parameter of <jats:inline-formula> <jats:tex-math><?CDATA $ 0 \leq b \leq 12.5 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074110_M1.jpg" xlink:type="simple" /> </jats:inline-formula> fm at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s_{NN}} = 200 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074110_M2.jpg" xlink:type="simple" /> </jats:inline-formula> GeV are simulated using the AMPT model to provide preliminary final-state information. After transforming this information into appropriate input data (the energy spectra of final-state charged hadrons), we construct a multi-layer perceptron (MLP) and convolutional neural network (CNN) to connect final-state observables with the impact parameters. The results show that both the MLP and CNN can reconstruct the impact parameters with a mean absolute error approximately <jats:inline-formula> <jats:tex-math><?CDATA $ 0.4 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_074110_M3.jpg" xlink:type="simple" /> </jats:inline-formula> fm, although the CNN behaves slightly better. Subsequently, we test the neural networks at different beam energies and pseudorapidity ranges in this task. These two models work well at both low and high energies. However, when conducting a test for a larger pseudorapidity window, the CNN exhibits a higher prediction accuracy than the MLP. Using the Grad-CAM method, we shed light on the 'attention' mechanism of the CNN model. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074110
Gravitational waves from the vacuum decay with LISA *
Bum-Hoon Lee; Wonwoo Lee; Dong-han Yeom; Lu Yin
<jats:title>Abstract</jats:title> <jats:p>We investigate the gravitational wave spectrum originating from the cosmological first-order phase transition. We compare two models: one is a scalar field model without gravitation, while the other is a scalar field model with gravitation. Based on the sensitivity curves of the LISA space-based interferometer on the stochastic gravitational-wave background, we compare the difference between the gravitational wave spectra of the former and the latter cases obtained from the bubble collision process. In particular, we numerically calculate the speed of the bubble wall before collision for the two models. We demonstrate that the difference between the amplitudes of these spectra can clearly distinguish between the two models. We expect that the LISA with Signal to Noise Ratio = 10 could observe the spectrum as the fast first-order phase transition.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 075101
Search for correlations between host properties and DM host of fast radio bursts: constraints on the baryon mass fraction in IGM *
Hai-Nan Lin; Xin Li; Li Tang
<jats:title>Abstract</jats:title> <jats:p>The application of fast radio bursts (FRBs) as probes for investigating astrophysics and cosmology requires proper modelling of the dispersion measures of the Milky Way ( <jats:inline-formula> <jats:tex-math><?CDATA $ DM_{\rm MW} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_075102_M2.jpg" xlink:type="simple" /> </jats:inline-formula>) and host galaxy ( <jats:inline-formula> <jats:tex-math><?CDATA $ DM_{\rm host} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_075102_M3.jpg" xlink:type="simple" /> </jats:inline-formula>). <jats:inline-formula> <jats:tex-math><?CDATA $ DM_{\rm MW} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_075102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> can be estimated using the Milky Way electron models, such as the NE2001 model and YMW16 model. However, <jats:inline-formula> <jats:tex-math><?CDATA $ DM_{\rm host} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_075102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> is hard to model due to limited information on the local environment of the FRBs. In this study, using 17 well-localized FRBs, we search for possible correlations between <jats:inline-formula> <jats:tex-math><?CDATA $DM_{\rm host} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_075102_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and the properties of the host galaxies, such as the redshift, stellar mass, star-formation rate, age of galaxy, offset of the FRB site from the galactic center, and half-light radius. We find no strong correlation between <jats:inline-formula> <jats:tex-math><?CDATA $ DM_{\rm host} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_075102_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and any of the host properties. Assuming that <jats:inline-formula> <jats:tex-math><?CDATA $DM_{\rm host} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_075102_M8.jpg" xlink:type="simple" /> </jats:inline-formula> is a constant for all host galaxies, we constrain the fraction of the baryon mass in the intergalactic medium today to be <jats:inline-formula> <jats:tex-math><?CDATA $ f_{\rm IGM,0}=0.78_{-0.19}^{+0.15} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_075102_M9.jpg" xlink:type="simple" /> </jats:inline-formula>. If we model <jats:inline-formula> <jats:tex-math><?CDATA $ DM_{\rm host} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_075102_M10.jpg" xlink:type="simple" /> </jats:inline-formula> as a log-normal distribution, however, we obtain a larger value, <jats:inline-formula> <jats:tex-math><?CDATA $ f_{\rm IGM,0}= 0.83_{-0.17}^{+0.12} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_075102_M11.jpg" xlink:type="simple" /> </jats:inline-formula>. Based on the limited number of FRBs, no strong evidence for a redshift evolution of <jats:inline-formula> <jats:tex-math><?CDATA $ f_{\rm IGM} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_7_075102_M12.jpg" xlink:type="simple" /> </jats:inline-formula> is found. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 075102