Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Hadron and light nucleus radii from electron scattering

Zhu-Fang Cui; Daniele Binosi; Craig RobertsORCID; Sebastian Schmidt

<jats:title>Abstract</jats:title> <jats:p>Conceptually, radii are amongst the simplest Poincar'e-invariant properties that can be associated with hadrons and light nuclei. Accurate values of these quantities are necessary so that one may judge the character of putative solutions to the strong interaction problem within the Standard Model. However, limiting their ability to serve in this role, recent measurements and new analyses of older data have revealed uncertainties and imprecisions in the radii of the proton, pion, kaon, and deuteron. In the context of radius measurement using electron+hadron elastic scattering, the past decade has shown that reliable extraction requires minimisation of bias associated with practitioner-dependent choices of data fitting functions. Different answers to that challenge have been offered; and this perspective describes the statistical Schlessinger point method (SPM), in unifying applications to proton, pion, kaon, and deuteron radii. Grounded in analytic function theory, independent of assumptions about underlying dynamics, free from practitioner-induced bias, and applicable in the same form to diverse systems and observables, the SPM returns an objective expression of the information contained in any data under consideration. Its robust nature and versatility make it suitable for use in many branches of experiment and theory.Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. No disponible

Level structure of the double-shell closure system with Z = 14 and N = 20: 34Si

Changbum MOON; Cenxi YuanORCID

<jats:title>Abstract</jats:title> <jats:p>Level structure of the double-magic nucleus 34Si (Z = 14, N = 20) has been investigated by evaluating the available data. On the basis of experimental results from the beta-decay and fusion-evaporation reactions, we have established the level scheme as assigning spin-parities up to 61+ at 6233 keV. High energy positions of excited states are consistent with the magicity at 34Si, such as the 22+ state of the spherical ground band at 4.519 MeV and the 3-, 4-, and 5- states of the one-particle one-hole cross-shell states at around 4.5 MeV. This nucleus, for a long time, has attracted much attention because of, on one side, a proton bubble structure at the ground state and, on the other side, a deformation at the second 0+ state, 02+. By a comparison of the constructed level scheme with the shell model calculations, we describe the emerging structures in the ground and second 0+ states, and negative-parity 3- states within the framework of shell model context. We propose a deformed rotational band with the cascading 62+ - 41+ - 21+ transitions built on the 02+ state.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. No disponible

Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO

Miao HeORCID

<jats:title>Abstract</jats:title> <jats:p>JUNO is a multi-purpose neutrino observatory under construction in the south of China. This publication presents new sensitivity estimates for the measurement of the Δm<jats:sup>2</jats:sup> <jats:sub>31</jats:sub>, Δm<jats:sup>2</jats:sup> <jats:sub>21</jats:sub>, sin<jats:sup>2</jats:sup>θ<jats:sub>12</jats:sub>, and sin<jats:sup>2</jats:sup>θ<jats:sub>13</jats:sub> oscillation parameters using reactor antineutrinos, which is one of the primary physics goals of the experiment. The sensitivities are obtained using the best knowledge available to date on the location and overburden of the experimental site, the nuclear reactors in the surrounding area and beyond, the detector response uncertainties, and the reactor antineutrino spectral shape constraints expected from the TAO satellite detector. It is found that the Δm<jats:sup>2</jats:sup> <jats:sub>21</jats:sub> and sin<jats:sup>2</jats:sup>θ<jats:sub>12</jats:sub> oscillation parameters will be determined to better than 0.5% precision in six years of data collection. In the same period, the Δm<jats:sup>2</jats:sup> <jats:sub>31</jats:sub> parameter will be determined to about 0.2% precision for each mass ordering hypothesis. The new precision represents approximately an order of magnitude improvement over existing constraints.Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. No disponible

The strange cousin of the $Z_c(4020/4025)$ as tetraquark state

Zhi-Gang(志刚) Wang(王)ORCID

<jats:title>Abstract</jats:title> <jats:p>Motivated by the analogous properties of the $Z_c(3900/3885)$ and $Z_{cs}(3985/4000)$, we tentatively assign the $Z_c(4020/4025)$ as the $A\bar{A}$-type hidden-charm tetraquark state with the $J^{PC}=1^{+-}$, where the $A$ denotes the axialvector diquark states, and explore the $A\bar{A}$-type tetraquark states without strange, with strange and with hidden-strange via the QCD sum rules in a consistent way. Then we explore the hadronic coupling constants in the two-body strong decays of the tetraquark states without strange and with strange via the QCD sum rules based on rigorous quark-hadron duality, and acquire the partial decay widths and total decay widths. The present calculations support assigning the $Z_c(4020/4025)$ as the $A\bar{A}$-type tetraquark state with the $J^{PC}=1^{+-}$, while the predictions for its strange cousin $Z_{cs}$ state can be confronted to the experimental data in the future.Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. No disponible

Observational Hubble parameter data constraints on the interactive model of $f(T)$ gravity with particle creation

S. Ganjizadeh; Alireza AmaniORCID; M. Ramzanpour

<jats:title>Abstract</jats:title> <jats:p>In this paper, we consider an open system from the thermodynamic perspective for an adiabatic FRW universe model in which particle creation occurs within the system. In that case, the modified continuity equation is obtained and then we correspond it to the continuity equation of $f(T)$ gravity. So, we take $f(T)$ gravity with the viscous fluid in flat-FRW metric, in which $T$ is the torsion scalar. We consider the contents of the universe to be dark matter and dark energy and consider an interaction term between them. The interesting point of this study is that we make equivalent the modified continuity equation resulting from the particle creation with the matter continuity equation resulting from $f(T)$ gravity. The result of this evaluation creates a relationship between the number of particles and the scale factor. In what follows, we write the corresponding cosmological parameters in terms of the number of particles and also reconstruct the number of particles in terms of the redshift parameter, then We parameterize the Hubble parameter derived from power-law cosmology with 51 data from the Hubble observational parameter. Next, we plot the corresponding cosmological parameters for the dark energy in terms of the redshift to investigate the accelerated expansion of the universe. In addition, by using the sound speed parameter, we discuss the stability analysis and instability analysis of the present model in different eras of the universe. Finally, we plot the density parameter values for dark energy and dark matter in terms of the redshift parameter.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. No disponible

The single-particle space-momentum angle distribution effect on two-pion HBT correlation with the Coulomb interaction

Hang YangORCID; Qichun Feng; Jingbo Zhang

<jats:title>Abstract</jats:title> <jats:p>We calculate the HBT radius Rs for π+ particles with the Coulomb interaction by using the string melting version of a multiphase transport(AMPT) model. We study the relationship between the single-particle space-momentum angle and the particle sources and discuss HBT radii without single-particle space-momentum correlation. Additionally, we study the Coulomb interaction effect on the numerical connection between the single-particle space-momentum angle distribution and the transverse momentum dependence of Rs.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. No disponible

Speculations on the W-Mass Measurement at CDF

Teng MaORCID; Jiayin Gu; Jing 舒菁 Shu; Zhen Liu

<jats:title>Abstract</jats:title> <jats:p>The W Mass determination at the Tevatron CDF experiment reported a deviation from the SM expectation at 7$\sigma$ level. We discuss a few possible interpretations and their collider implications. We perform electroweak global fits under various frameworks and assumptions. We consider three types of electroweak global fits in the effective-field-theory framework: the $S$-$T$, the $S$-$T$-$\delta G_F$, and the eight-parameter flavor-universal one. We discuss the amounts of tensions between different $m_W$ measurements reflected in these fits and the corresponding shifts in central values of these parameters. With these electroweak fit pictures in hand, we present a few different classes of models and discuss their compatibility with these results. We find that while explaining the $m_W$ discrepancy, the single gauge boson extensions face strong LHC direct search constraints unless the $Z'$ is fermiophobic (leptophobic) which can be realized if extra vector fermions (leptons) mix with the SM fermions (leptons). Vector-like top partners can partially generate the needed shift to the electroweak observables. The compatibility with top squark is also studied in detail. We find non-degenerate top squark soft masses enhance the needed operator coefficients, enabling an allowed explanation compatible with current LHC measurements. Overall, more theory and experimental developments are highly in demand to reveal the physics behind this discrepancy.Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. No disponible

Expected measurement precision with production at the CEPC *

Qi Liu; Kunlin Ran; Yanping Huang; Gang Li; Manqi Ruan; Shan Jin; Liang Sun

<jats:title>Abstract</jats:title> <jats:p>A search for the dimuon decay of the Standard Model Higgs boson is performed using Monte Carlo simulated events to mimic data corresponding to an integrated luminosity of 5.6 ab <jats:inline-formula> <jats:tex-math><?CDATA $ ^{-1} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> collected with the Circular Electron-Positron Collider detector in <jats:inline-formula> <jats:tex-math><?CDATA $ e^{+}e^{-} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> collisions at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s}=240 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> GeV. This study investigates the <jats:inline-formula> <jats:tex-math><?CDATA $ e^{+}e^{-}\to ZH,\, $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093001_M6.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ Z\to q\bar{q},\,H\to {{\mu^+\mu^-}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093001_M6-1.jpg" xlink:type="simple" /> </jats:inline-formula> process, and the expected significance considering only the statistical uncertainty in the data for a background-only hypothesis for a Higgs boson with a mass of 125 GeV is found to be 6.1 <jats:inline-formula> <jats:tex-math><?CDATA $ \sigma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093001_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, corresponding to a precision of 19%. The systematic impacts from the background Monte Carlo statistical fluctuations are estimated to be negligible. Moreover, the dependence of the measurement accuracy on the muon momentum resolution of the CEPC detector is investigated. It is found that the muon momentum resolution must be better than 204 MeV to discover the <jats:inline-formula> <jats:tex-math><?CDATA $ H\to\mu\mu $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093001_M8.jpg" xlink:type="simple" /> </jats:inline-formula> process at the nominal integrated luminosity. If the resolution is 100% worse than the designed parameter, the integrated luminosity must be greater than 7.2 ab <jats:inline-formula> <jats:tex-math><?CDATA $ ^{-1} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093001_M9.jpg" xlink:type="simple" /> </jats:inline-formula> to reach 5 <jats:inline-formula> <jats:tex-math><?CDATA $ \sigma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093001_M10.jpg" xlink:type="simple" /> </jats:inline-formula> significance. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093001

Exclusive vector meson production with the analytical solution of Balitsky-Kovchegov equation *

Xiao-Peng Wang; Wei Kou; Gang Xie; Ya-Ping Xie; Xu-Rong Chen

<jats:title>Abstract</jats:title> <jats:p>Exclusive vector meson production is an excellent probe for describing the structure of protons. In this study, based on the dipole model, the differential cross sections, total cross sections, and ratios of the longitudinal to transverse cross section of the <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \rho^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093101_M2.jpg" xlink:type="simple" /> </jats:inline-formula> productions are calculated with the analytical solution of the Balitsky-Kovchegov (BK) equation. In addition, we consider the influences of two meson wave function models on the results. Our predictions, which are slightly sensitive to meson wave functions, agree with the experimental data. The analytical solution of the BK equation is reliable for description of exclusive vector meson productions in a certain range of <jats:inline-formula> <jats:tex-math><?CDATA $ Q^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093101_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093101

1Dand 2D Ξ b and Λ b baryons *

Guo-Liang Yu; Zhi-Gang Wang; Xiu-Wu Wang

<jats:title>Abstract</jats:title> <jats:p>Recently, scientists have achieved significant progress in experiments searching for excited <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi_{b} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{b} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> baryons such as <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{b}(6072) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{b}(6146) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{b}(6152) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi_{b}(6227) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi_{b}(6100) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi_{b}(6327) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi_{b}(6333) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M12.jpg" xlink:type="simple" /> </jats:inline-formula>. Motivated by these achievements, we systematically analyze the <jats:inline-formula> <jats:tex-math><?CDATA $ 1D $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M13.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ 2D $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M14.jpg" xlink:type="simple" /> </jats:inline-formula> states of <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi_{b} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M15.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{b} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M16.jpg" xlink:type="simple" /> </jats:inline-formula> baryons using the method of quantum chromodynamics sum rules. By constructing three types of interpolating currents, we calculate the masses and pole residues of these heavy baryons with different excitation modes: <jats:inline-formula> <jats:tex-math><?CDATA $ (L_{\rho},L_{\lambda})=(0,2) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M17.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ (2,0) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M18.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ (1,1) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M19.jpg" xlink:type="simple" /> </jats:inline-formula>. Subsequently, we decode the inner structures of <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{b}(6146) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M20.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{b}(6152) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M21.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi_{b}(6327) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M22.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi_{b}(6333) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M23.jpg" xlink:type="simple" /> </jats:inline-formula> and favor assigning these states as the <jats:inline-formula> <jats:tex-math><?CDATA $ 1D $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M24.jpg" xlink:type="simple" /> </jats:inline-formula> baryons with the quantum numbers <jats:inline-formula> <jats:tex-math><?CDATA $ (L_{\rho},L_{\lambda})=(0,2) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M25.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ {3}/{2}^{+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M26.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ {5}/{2}^{+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M27.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ {3}/{2}^{+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M28.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA ${5}/{2}^{+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M29.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively. In addition, the predictions for the masses and pole residues of the other <jats:inline-formula> <jats:tex-math><?CDATA $ 1D $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M30.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $2D ~\Xi_{b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M31.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{b} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_9_093102_M32.jpg" xlink:type="simple" /> </jats:inline-formula> baryons in this paper will be useful for studying <jats:italic>D</jats:italic>-wave bottom baryons in the future. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093102