Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Open charm mesons and charmonia in magnetized strange hadronic matter *

Amal Jahan C. S.; Amruta Mishra

<jats:title>Abstract</jats:title> <jats:p>We investigate the in-medium masses of open charm mesons (<jats:italic>D</jats:italic>( <jats:inline-formula> <jats:tex-math><?CDATA $ D^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ D^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M2.jpg" xlink:type="simple" /> </jats:inline-formula>), <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{D} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M3.jpg" xlink:type="simple" /> </jats:inline-formula>( <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{D^0} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ D^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M5.jpg" xlink:type="simple" /> </jats:inline-formula>), <jats:inline-formula> <jats:tex-math><?CDATA $ D_s $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M6.jpg" xlink:type="simple" /> </jats:inline-formula>( <jats:inline-formula> <jats:tex-math><?CDATA $ {D_{s}}^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ {D_{s}}^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M8.jpg" xlink:type="simple" /> </jats:inline-formula>)) and charmonium states ( <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \psi(3686) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \psi(3770) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \chi_{c0} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \chi_{c2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M13.jpg" xlink:type="simple" /> </jats:inline-formula>) in strongly magnetized isospin asymmetric strange hadronic matter using a chiral effective model. In the presence of a magnetic field, the number and scalar densities of charged baryons have contributions from Landau energy levels. The mass modifications of open charm mesons result from their interactions with nucleons, hyperons, and the scalar fields (the non-strange field <jats:italic>σ</jats:italic>, strange field <jats:italic>ζ</jats:italic>, and isovector field <jats:italic>δ</jats:italic>) in the presence of a magnetic field. The mass modifications of the charmonium states result from the modification of gluon condensates in a medium simulated by the variation in the dilaton field (<jats:italic>χ</jats:italic>) in the chiral effective model. The effects of finite quark masses are also incorporated in the trace of the energy-momentum tensor in quantum chromodynamics to investigate the mass shifts of charmonium states. The in-medium masses of open charm mesons and charmonia are observed to decrease with an increase in baryon density. The charged <jats:inline-formula> <jats:tex-math><?CDATA $ D^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M14.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ D^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M15.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ {D_{s}}^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M16.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ {D_{s}}^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M17.jpg" xlink:type="simple" /> </jats:inline-formula> mesons have additional positive mass shifts due to Landau quantization in the presence of a magnetic field. The effects of the strangeness fraction are observed to be more dominant for <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{D} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083106_M18.jpg" xlink:type="simple" /> </jats:inline-formula> mesons compared with <jats:italic>D</jats:italic> mesons. The mass shifts of charmonia are observed to be larger in hyperonic media compared with nuclear media when the effect of the finite quark mass term is neglected. These medium mass modifications can have observable consequences on the production of the open charm mesons and charmonia in high-energy asymmetric heavy-ion collision experiments. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 083106

Search for a lighter neutral custodial fiveplet scalar in the Georgi-Machacek model *

Chu Wang; Jun-Quan Tao; M. Aamir Shahzad; Guo-Ming Chen; S. Gascon-Shotkin

<jats:title>Abstract</jats:title> <jats:p>Many researches from both theoretical and experimental perspectives have been performed to search for a new Higgs Boson that is lighter than the 125 <jats:inline-formula> <jats:tex-math><?CDATA $ {\rm GeV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083107_M1.jpg" xlink:type="simple" /> </jats:inline-formula> Higgs boson, which was discovered at the LHC in 2012. In this study, we explore the possibility of constraining a lighter neutral custodial fiveplet scalar <jats:inline-formula> <jats:tex-math><?CDATA $ H_{5}^{0} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083107_M2.jpg" xlink:type="simple" /> </jats:inline-formula> in the Georgi-Machacek (GM) model using the latest results of the search for a lighter Higgs boson decaying into two photons from LHC data. The custodial-singlet mass eigenstate <jats:italic>h</jats:italic> or <jats:italic>H</jats:italic> is considered to be the LHC observed 125 <jats:inline-formula> <jats:tex-math><?CDATA $ {\rm GeV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083107_M3.jpg" xlink:type="simple" /> </jats:inline-formula> Higgs boson. A new set of constrained parameters that is favoured by low-mass <jats:inline-formula> <jats:tex-math><?CDATA $ H_{5}^{0} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083107_M4.jpg" xlink:type="simple" /> </jats:inline-formula> is proposed to generate events efficiently. The production of <jats:inline-formula> <jats:tex-math><?CDATA $ H_{5}^{0} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083107_M5.jpg" xlink:type="simple" /> </jats:inline-formula> from a scan based on the constrained parameters is compared to the latest results of the search for a lighter Higgs boson decaying into two photons by the CMS Collaboration after applying theoretical constraints from the GM model and constraints from all existing relevant experimental measurements, including the recent results of the Higgs boson searches by the LHC. Numerical analyses of the surviving GM parameter space are performed. The tendencies and correlations of the GM input parameters from phenomenological studies are summarized. In addition, the discovery potential of the other interesting decay channels of this low-mass neutral custodial fiveplet scalar are discussed. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 083107

The decay and the mixing *

Jia-Ting Li; Jia-Xin Lin; Gong-Jie Zhang; Wei-Hong Liang; E. Oset

<jats:title>Abstract</jats:title> <jats:p>We study the <jats:inline-formula> <jats:tex-math><?CDATA $\bar B_s^0 \to J/\psi f_0(980)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083108_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\bar B_s^0 \to J/\psi a_0(980)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083108_M4.jpg" xlink:type="simple" /> </jats:inline-formula> reactions, and pay attention to the different sources of isospin violation and mixing of <jats:inline-formula> <jats:tex-math><?CDATA $f_0(980)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083108_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $a_0(980)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083108_M6.jpg" xlink:type="simple" /> </jats:inline-formula> resonances where these resonances are dynamically generated from meson–meson interactions. We find that the main cause of isospin violation is isospin breaking in the meson–meson transition <jats:italic>T</jats:italic> matrices, and the other source is that the loops involving kaons in the production mechanism do not cancel due to the different masses of charged and neutral kaons. We obtain a branching ratio for <jats:inline-formula> <jats:tex-math><?CDATA $a_0(980)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083108_M7.jpg" xlink:type="simple" /> </jats:inline-formula> production of the order of <jats:inline-formula> <jats:tex-math><?CDATA $5 \times 10^{-6}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083108_M8.jpg" xlink:type="simple" /> </jats:inline-formula>. Future experiments can address this problem, and the production rate and shape of the <jats:inline-formula> <jats:tex-math><?CDATA $\pi^0 \eta$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083108_M9.jpg" xlink:type="simple" /> </jats:inline-formula> mass distribution will definitely help to better understand the nature of scalar resonances. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 083108

Color-flavor dependence of the Nambu-Jona-Lasinio model and QCD phase diagram

Aftab Ahmad; Ali Murad

<jats:title>Abstract</jats:title> <jats:p>We study the dynamical chiral symmetry breaking/restoration for various numbers of light quarks flavors <jats:inline-formula> <jats:tex-math><?CDATA $ N_f $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and colors <jats:inline-formula> <jats:tex-math><?CDATA $ N_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M2.jpg" xlink:type="simple" /> </jats:inline-formula> using the Nambu-Jona-Lasinio (NJL) model of quarks in the Schwinger-Dyson equation framework, dressed with a color-flavor dependence of effective coupling. For fixed <jats:inline-formula> <jats:tex-math><?CDATA $ N_f = 2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and varying <jats:inline-formula> <jats:tex-math><?CDATA $ N_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, we observe that the dynamical chiral symmetry is broken when <jats:inline-formula> <jats:tex-math><?CDATA $ N_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M5.jpg" xlink:type="simple" /> </jats:inline-formula> exceeds its critical value <jats:inline-formula> <jats:tex-math><?CDATA $ N^{c}_{c}\approx2.2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M6.jpg" xlink:type="simple" /> </jats:inline-formula>. For a fixed <jats:inline-formula> <jats:tex-math><?CDATA $ N_c = 3 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and varying <jats:inline-formula> <jats:tex-math><?CDATA $ N_f $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, we observe that the dynamical chiral symmetry is restored when <jats:inline-formula> <jats:tex-math><?CDATA $ N_f $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M9.jpg" xlink:type="simple" /> </jats:inline-formula> reaches its critical value <jats:inline-formula> <jats:tex-math><?CDATA $ N^{c}_{f}\approx8 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M10.jpg" xlink:type="simple" /> </jats:inline-formula>. Strong interplay is observed between <jats:inline-formula> <jats:tex-math><?CDATA $ N_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M11.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ N_f $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, i.e., larger values of <jats:inline-formula> <jats:tex-math><?CDATA $ N_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M13.jpg" xlink:type="simple" /> </jats:inline-formula> tend to strengthen the dynamical generated quark mass and quark-antiquark condensate, while higher values of <jats:inline-formula> <jats:tex-math><?CDATA $ N_f $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M14.jpg" xlink:type="simple" /> </jats:inline-formula> suppress both parameters. We further sketch the quantum chromodynamics (QCD) phase diagram at a finite temperature <jats:italic>T</jats:italic> and quark chemical potential <jats:italic>μ</jats:italic> for various <jats:inline-formula> <jats:tex-math><?CDATA $ N_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M15.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ N_f $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M16.jpg" xlink:type="simple" /> </jats:inline-formula>. At finite <jats:italic>T</jats:italic> and <jats:italic>μ</jats:italic>, we observe that the critical number of colors <jats:inline-formula> <jats:tex-math><?CDATA $ N^{c}_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M17.jpg" xlink:type="simple" /> </jats:inline-formula> is enhanced, whereas the critical number of flavors <jats:inline-formula> <jats:tex-math><?CDATA $ N^{c}_f $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M18.jpg" xlink:type="simple" /> </jats:inline-formula> is suppressed as <jats:italic>T</jats:italic> and <jats:italic>μ</jats:italic> increase. Consequently, the critical temperature <jats:inline-formula> <jats:tex-math><?CDATA $ T_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M19.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \mu_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M20.jpg" xlink:type="simple" /> </jats:inline-formula>, and co-ordinates of the critical endpoint <jats:inline-formula> <jats:tex-math><?CDATA $ (T^{E}_c,\mu^{E}_c) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M21.jpg" xlink:type="simple" /> </jats:inline-formula> in the QCD phase diagram are enhanced as <jats:inline-formula> <jats:tex-math><?CDATA $ N_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M22.jpg" xlink:type="simple" /> </jats:inline-formula> increases and suppressed when <jats:inline-formula> <jats:tex-math><?CDATA $ N_f $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083109_M23.jpg" xlink:type="simple" /> </jats:inline-formula> increases. Our findings agree with the lattice QCD and Schwinger-Dyson equations predictions. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 083109

Impact of mixing on the localized CP violations of the decay *

Jing-Juan Qi; Xuan Zhang; Chao Wang; Zhen-Yang Wang; Xin-Heng Guo

<jats:title>Abstract</jats:title> <jats:p>In the framework of the QCD factorization approach, we study the localized <jats:inline-formula> <jats:tex-math><?CDATA $ CP $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M4.jpg" xlink:type="simple" /> </jats:inline-formula> violations of the <jats:inline-formula> <jats:tex-math><?CDATA $ B^-\rightarrow K^- \pi^+\pi^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M5.jpg" xlink:type="simple" /> </jats:inline-formula> decay with and without the <jats:inline-formula> <jats:tex-math><?CDATA $ a_0^0(980)-f_0(980) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M6.jpg" xlink:type="simple" /> </jats:inline-formula> mixing mechanism and observe that the localized <jats:inline-formula> <jats:tex-math><?CDATA $ CP $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M7.jpg" xlink:type="simple" /> </jats:inline-formula> violation can be enhanced by this mixing effect when the mass of the <jats:inline-formula> <jats:tex-math><?CDATA $ \pi^+\pi^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M8.jpg" xlink:type="simple" /> </jats:inline-formula> pair is in the vicinity of the <jats:inline-formula> <jats:tex-math><?CDATA $ f_0(980) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M9.jpg" xlink:type="simple" /> </jats:inline-formula> resonance. The corresponding theoretical prediction results are <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{A}}_{CP}(B^-\rightarrow K f_0 \rightarrow K^-\pi^+\pi^-)= [0.126,\ 0.338]$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M10.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $ 0.232\pm0.106 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M11.jpg" xlink:type="simple" /> </jats:inline-formula> with the central value form) and <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{A}}_{CP}(B^-\rightarrow K^- f_0(a_0) \rightarrow K^-\pi^+\pi^-)=[0.230, 0.615] $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M12.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $ 0.423\pm0.193 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M13.jpg" xlink:type="simple" /> </jats:inline-formula> with the central value form), respectively. Meanwhile, we also calculate the branching fraction of the <jats:inline-formula> <jats:tex-math><?CDATA $B^-\rightarrow K^-f_0(980)\rightarrow K^-\pi^+\pi^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M14.jpg" xlink:type="simple" /> </jats:inline-formula> decay, which is consistent with the experimental results. We suggest that the <jats:inline-formula> <jats:tex-math><?CDATA $ a_0^0(980)-f_0(980) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M15.jpg" xlink:type="simple" /> </jats:inline-formula> mixing mechanism should be considered when theoretically and experimentally studying the <jats:inline-formula> <jats:tex-math><?CDATA $ CP $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083110_M16.jpg" xlink:type="simple" /> </jats:inline-formula> violation of the <jats:italic>B</jats:italic> or <jats:italic>D</jats:italic> meson decays. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 083110

Interpretation of XENON1T excess with MeV boosted dark matter *

Lian-Bao Jia; Tong Li

<jats:title>Abstract</jats:title> <jats:p>The XENON1T excess of keV electron recoil events may be induced by the scattering of electrons and long-lived particles with an MeV mass and high speed. We consider a tangible model composed of two scalar MeV dark matter (DM) particles, <jats:inline-formula> <jats:tex-math><?CDATA $ S_A $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ S_B $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, to interpret the XENON1T keV excess via boosted <jats:inline-formula> <jats:tex-math><?CDATA $ S_B $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. A small mass splitting <jats:inline-formula> <jats:tex-math><?CDATA $ m_{S_A}-m_{S_B}\gt{0} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M4.jpg" xlink:type="simple" /> </jats:inline-formula> is introduced, and the boosted <jats:inline-formula> <jats:tex-math><?CDATA $ S_B $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M5.jpg" xlink:type="simple" /> </jats:inline-formula> can be produced using the dark annihilation process of <jats:inline-formula> <jats:tex-math><?CDATA $ S_A S_A^\dagger \to \phi \to S_B S_B^\dagger $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M6.jpg" xlink:type="simple" /> </jats:inline-formula> via a resonant scalar <jats:italic>ϕ</jats:italic>. <jats:inline-formula> <jats:tex-math><?CDATA $ S_B- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M7.jpg" xlink:type="simple" /> </jats:inline-formula>electron scattering is intermediated by a vector boson <jats:italic>X</jats:italic>. Although the constraints from Big Bang nucleosynthesis, cosmic microwave background (CMB), and low-energy experiments set the <jats:inline-formula> <jats:tex-math><?CDATA $ X- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M8.jpg" xlink:type="simple" /> </jats:inline-formula>mediated <jats:inline-formula> <jats:tex-math><?CDATA $ S_B- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M9.jpg" xlink:type="simple" /> </jats:inline-formula>electron scattering cross section to be <jats:inline-formula> <jats:tex-math><?CDATA $ \lesssim 10^{-35} \mathrm{cm}^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, the MeV scale DM with a resonance enhanced dark annihilation today can still provide sufficient boosted <jats:inline-formula> <jats:tex-math><?CDATA $ S_B $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M11.jpg" xlink:type="simple" /> </jats:inline-formula> and induce the XENON1T keV excess. The relic density of <jats:inline-formula> <jats:tex-math><?CDATA $ S_B $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M12.jpg" xlink:type="simple" /> </jats:inline-formula> is significantly reduced by the <jats:italic>s</jats:italic>-wave process <jats:inline-formula> <jats:tex-math><?CDATA $ S_B S_B^\dagger \to X X $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, which is permitted by the constraints from CMB and 21-cm absorption. A very small relic fraction of <jats:inline-formula> <jats:tex-math><?CDATA $ S_B $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M14.jpg" xlink:type="simple" /> </jats:inline-formula> is compatible with the stringent bounds on un-boosted <jats:inline-formula> <jats:tex-math><?CDATA $ S_B $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M15.jpg" xlink:type="simple" /> </jats:inline-formula>-electron scattering in DM direct detection, and the <jats:inline-formula> <jats:tex-math><?CDATA $ S_A $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_083111_M16.jpg" xlink:type="simple" /> </jats:inline-formula>-electron scattering is also allowed. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 083111

Isospin dependent properties of the isotopic chains of Scandium and Titanium nuclei within the relativistic mean-field formalism *

Praveen K. Yadav; Raj Kumar; M. Bhuyan

<jats:title>Abstract</jats:title> <jats:p>Density-dependent nuclear symmetry energy is directly related to isospin asymmetry for finite and infinite nuclear systems. It is critical to determine the coefficients of symmetry energy and their related observables because they hold great importance in different areas of nuclear physics, such as the analysis of the structure of ground state exotic nuclei and neutron star studies. The ground state bulk properties of Scandium (Z = 21) and Titanium (Z = 22) nuclei are calculated, such as their nuclear binding energy ( <jats:inline-formula> <jats:tex-math><?CDATA $ B.E. $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084101_M1.jpg" xlink:type="simple" /> </jats:inline-formula>), quadrupole deformation ( <jats:inline-formula> <jats:tex-math><?CDATA $ \beta_2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084101_M2.jpg" xlink:type="simple" /> </jats:inline-formula>), two-neutron separation energy ( <jats:inline-formula> <jats:tex-math><?CDATA $ S_{ {2n}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084101_M3.jpg" xlink:type="simple" /> </jats:inline-formula>), differential variation in the two-neutron separation energy ( <jats:inline-formula> <jats:tex-math><?CDATA $ {\rm d}S_{ {2n}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084101_M4.jpg" xlink:type="simple" /> </jats:inline-formula>), and root-mean-square charge radius ( <jats:inline-formula> <jats:tex-math><?CDATA $ r_{\rm ch} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084101_M5.jpg" xlink:type="simple" /> </jats:inline-formula>). The isospin properties, namely the coefficient of nuclear symmetry energy and its components, such as the surface and volume symmetry energy of a finite isotopic chain, from the corresponding quantities of infinite nuclear matter, are also estimated. Finally, we correlate the neutron-skin thickness with the coefficient of symmetry energy and the related observables corresponding to the isotopic chains of these nuclei. The coherent density fluctuation model (CDFM) is used to estimate the isospin-dependent properties of finite nuclei, such as symmetry energy, surface symmetry energy, and volume symmetry energy, from their corresponding component in infinite nuclear matter. The relativistic mean-field (RMF) formalism with non-linear NL3 and relativistic-Hartree-Bogoliubov theory with density-dependent DD-ME2 interaction parameters are employed in the analysis. The weight function <jats:inline-formula> <jats:tex-math><?CDATA $ \vert {\cal{F}}(x) \vert^{2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084101_M6.jpg" xlink:type="simple" /> </jats:inline-formula> is estimated using the total density of each nucleus, which in turn is used with the nuclear matter quantities to obtain the effective symmetry energy and its components in finite nuclei. We calculate the ground state bulk properties, such as nuclear binding energy, quadrupole deformation, two-neutron separation energy, differential variation in the two-neutron separation energy, and root-mean-square charge radius, for the Sc- and Ti- isotopic chains using the non-linear NL3 and density-dependent DD-ME2 parameter sets. Furthermore, the ground state density distributions are used within the CDFM to obtain the effective surface properties, such as symmetry energy and its components, namely volume and surface symmetry energy, for both the parameter sets. The calculated quantities are used to understand the isospin dependent structural properties of finite nuclei near and beyond the drip line, which broadens the scope of discovering new magicity along the isotopic chains. A shape transition is observed from spherical to prolate near <jats:inline-formula> <jats:tex-math><?CDATA $ N \geq $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084101_M7.jpg" xlink:type="simple" /> </jats:inline-formula> 44 and <jats:inline-formula> <jats:tex-math><?CDATA $ N \geq $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084101_M8.jpg" xlink:type="simple" /> </jats:inline-formula> 40 for the Sc- and Ti- isotopic chains, respectively. Notable signatures of shell and/or sub-shell closures are found for the magic neutron numbers <jats:italic>N</jats:italic> = 20 and 28 for both isotopic chains using the nuclear bulk and isospin quantities. In addition to these, a few shell/sub-shell closure signatures are observed near the drip-line region at <jats:italic>N</jats:italic> = 34 and 50 by following the surface/isospin dependent observables, namely symmetry energy and its component, for both the isotopic chain of <jats:italic>odd-A</jats:italic> Sc- and <jats:italic>even-even</jats:italic> Ti- nuclei. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 084101

A general framework for describing photofission observables of actinides at an average excitation energy below 30 MeV *

Guan-Lin Wang; Hao-Yang Lan; Xiao-Ming Shi; Zhi-Chao Zhu; Wen Luo

<jats:title>Abstract</jats:title> <jats:p>A reasonable prediction of photofission observables plays a paramount role in understanding the photofission process and guiding various photofission-induced applications, such as short-lived isotope production, nuclear waste disposal, and nuclear safeguards. However, the available experimental data for photofission observables are limited, and the existing models and programs have mainly been developed for neutron-induced fission processes. In this study, a general framework is proposed for characterizing the photofission observables of actinides, including the mass yield distributions (MYD) and isobaric charge distributions (ICD) of fission fragments and the multiplicity and energy distributions of prompt neutrons (<jats:italic>n<jats:sub>p</jats:sub> </jats:italic>) and prompt <jats:italic>γ</jats:italic> rays (<jats:italic>γ</jats:italic> <jats:italic> <jats:sub>p</jats:sub> </jats:italic>). The framework encompasses various systematic neutron models and empirical models considering the Bohr hypothesis and does not rely on the experimental data as input. These models are then validated individually against experimental data at an average excitation energy below 30 MeV, which shows the reliability and robustness of the general framework. Finally, we employ this framework to predict the characteristics of photofission fragments and the emissions of prompt particles for typical actinides including <jats:sup>232</jats:sup>Th, <jats:sup>235, 238</jats:sup>U and <jats:sup>240</jats:sup>Pu. It is found that the <jats:sup>238</jats:sup>U(<jats:italic>γ</jats:italic>, <jats:italic>f</jats:italic>) reaction is more suitable for producing neutron-rich nuclei compared to the <jats:sup>232</jats:sup>Th(<jats:italic>γ</jats:italic>, <jats:italic>f</jats:italic>) reaction. In addition, the average multiplicity number of both <jats:italic>n<jats:sub>p</jats:sub> </jats:italic>and <jats:italic>γ</jats:italic> <jats:italic> <jats:sub>p</jats:sub> </jats:italic> increases with the average excitation energy. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 084102

Electromagnetic field produced in high-energy small collision systems within charge density models of nucleons *

Zong-Wei Zhang; Xian-Zhuo Cen; Wei-Tian Deng

<jats:title>Abstract</jats:title> <jats:p>Recent experiments show that <jats:inline-formula> <jats:tex-math><?CDATA $ \Delta\gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084103_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, an observable designed to detect the chiral magnetic effect (CME), in small collision systems ( <jats:inline-formula> <jats:tex-math><?CDATA $ p+A $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084103_M2.jpg" xlink:type="simple" /> </jats:inline-formula>) is similar to that in heavy ion collisions ( <jats:inline-formula> <jats:tex-math><?CDATA $ A+A $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084103_M3.jpg" xlink:type="simple" /> </jats:inline-formula>). This introduces a challenge to the existence of the CME because it is believed that no azimuthal correlation exists between the orientation of the magnetic field ( <jats:inline-formula> <jats:tex-math><?CDATA $ \Phi_B $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084103_M4.jpg" xlink:type="simple" /> </jats:inline-formula>) and participant plane ( <jats:inline-formula> <jats:tex-math><?CDATA $ \Phi_2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084103_M5.jpg" xlink:type="simple" /> </jats:inline-formula>) in small collision systems. In this work, we introduce three charge density models to describe the inner charge distributions of protons and neutrons and calculate the electric and magnetic fields produced in small <jats:inline-formula> <jats:tex-math><?CDATA $ p+A $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084103_M6.jpg" xlink:type="simple" /> </jats:inline-formula> collisions at both RHIC and LHC energies. Our results show that the contribution of the single projectile proton is the main contributor to the magnetic field after averaging over all participants. The azimuthal correlation between <jats:inline-formula> <jats:tex-math><?CDATA $ \Phi_B $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084103_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Phi_2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084103_M8.jpg" xlink:type="simple" /> </jats:inline-formula> is small but not vanished. Additionally, owing to the large fluctuation in field strength, the magnetic-field contribution to <jats:inline-formula> <jats:tex-math><?CDATA $ \Delta\gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_084103_M9.jpg" xlink:type="simple" /> </jats:inline-formula> may be large. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 084103

Measurement of muon-induced neutron yield at the China Jinping Underground Laboratory *

Lin Zhao; Wentai Luo; Lars Bathe-Peters; Shaomin Chen; Mourad Chouaki; Wei Dou; Lei Guo; Ziyi Guo; Ghulam Hussain; Jinjing Li; Ye Liang; Qian Liu; Guang Luo; Ming Qi; Wenhui Shao; Jian Tang; Linyan Wan; Zhe Wang; Yiyang Wu; Benda Xu; Tong Xu; Weiran Xu; Yuzi Yang; Minfang Yeh; Aiqiang Zhang; Bin Zhang

<jats:title>Abstract</jats:title> <jats:p>Solar, terrestrial, and supernova neutrino experiments are subject to muon-induced radioactive background. The China Jinping Underground Laboratory (CJPL), with its unique advantage of a 2400 m rock coverage and long distance from nuclear power plants, is ideal for MeV-scale neutrino experiments. Using a 1-ton prototype detector of the Jinping Neutrino Experiment (JNE), we detected 343 high-energy cosmic-ray muons and (7.86 <jats:inline-formula> <jats:tex-math><?CDATA $ \pm $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_085001_M1.jpg" xlink:type="simple" /> </jats:inline-formula>3.97) muon-induced neutrons from an 820.28-day dataset at the first phase of CJPL (CJPL-I). Based on the muon-induced neutrons, we measured the corresponding muon-induced neutron yield in a liquid scintillator to be <jats:inline-formula> <jats:tex-math><?CDATA $(3.44 \pm 1.86_{\rm stat.}\pm $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_085001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ 0.76_{\rm syst.})\times 10^{-4}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_085001_M2-1.jpg" xlink:type="simple" /> </jats:inline-formula> μ<jats:sup>−1</jats:sup>g<jats:sup>−1</jats:sup>cm<jats:sup>2</jats:sup> at an average muon energy of 340 GeV. We provided the first study for such neutron background at CJPL. A global fit including this measurement shows a power-law coefficient of (0.75 <jats:inline-formula> <jats:tex-math><?CDATA $ \pm $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_8_085001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>0.02) for the dependence of the neutron yield at the liquid scintillator on muon energy. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 085001