Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Radiative decays of f1(1285) as the K*K̅ molecular state *
Ju-Jun Xie; Gang Li; Xiao-Hai Liu
<jats:title>Abstract</jats:title> <jats:p>With <jats:inline-formula> <jats:tex-math><?CDATA $f_1(1285)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> as a dynamically generated resonance from <jats:inline-formula> <jats:tex-math><?CDATA $ K^*\bar K$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> interactions, we estimate the rates of the radiative transitions of the <jats:inline-formula> <jats:tex-math><?CDATA $f_1(1285)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> meson to the vector mesons <jats:inline-formula> <jats:tex-math><?CDATA $\rho^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114104_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114104_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\phi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114104_M8.jpg" xlink:type="simple" /> </jats:inline-formula>. These radiative decays proceed via the kaon loop diagrams. The calculated results are in a fair agreement with experimental measurements. Some predictions can be tested experimentally; their analysis will be valuable for decoding the strong coupling of the <jats:inline-formula> <jats:tex-math><?CDATA $f_1(1285)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114104_M9.jpg" xlink:type="simple" /> </jats:inline-formula> state to the <jats:inline-formula> <jats:tex-math><?CDATA $\bar{K}K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114104_M10.jpg" xlink:type="simple" /> </jats:inline-formula> channel. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114104
Pion parton distribution function in light-front holographic QCD *
Lei Chang; Khépani Raya; Xiaobin Wang
<jats:title>Abstract</jats:title> <jats:p>The valence-quark distribution function of the pion has been of interest for decades; particularly, the profile it should adopt when <jats:inline-formula> <jats:tex-math><?CDATA $x\to1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114105_M1.jpg" xlink:type="simple" /> </jats:inline-formula> (the large-<jats:italic>x</jats:italic> behavior) has been the subject of a long-standing debate. In the light-front holographic QCD (LFHQCD) approach, this behavior is controlled by the so-called reparametrization function, <jats:inline-formula> <jats:tex-math><?CDATA $w_\tau(x)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114105_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, which is not fully determined from first principles. We show that, owing to the flexibility of <jats:inline-formula> <jats:tex-math><?CDATA $w_\tau(x)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114105_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, the large-<jats:italic>x</jats:italic> profile <jats:inline-formula> <jats:tex-math><?CDATA $u^{\pi}(x)\sim (1-x)^{2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114105_M4.jpg" xlink:type="simple" /> </jats:inline-formula> can be contained within the LFHQCD formalism. This is in contrast to a previous LFHQCD study (Guy F. de Teramond et al., Phys. Rev. Lett., 120(18), 2018) in which <jats:inline-formula> <jats:tex-math><?CDATA $u^{\pi}(x)\sim (1-x)^{1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114105_M5.jpg" xlink:type="simple" /> </jats:inline-formula> was found instead. Given our observations, augmented by perturbative QCD and recent lattice QCD results, we state that the large-<jats:italic>x</jats:italic> exponent of “2” cannot be excluded. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114105
Near-threshold K*(892)+ meson production in the interaction of π− mesons with nuclei
E. Ya. Paryev
<jats:title>Abstract</jats:title> <jats:p>We study the inclusive production of strange vector <jats:inline-formula> <jats:tex-math><?CDATA $K^*(892)^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114106_M7.jpg" xlink:type="simple" /> </jats:inline-formula> mesons in <jats:inline-formula> <jats:tex-math><?CDATA ${\pi^-}A$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114106_M4.jpg" xlink:type="simple" /> </jats:inline-formula> reactions at near-threshold laboratory incident pion momenta of 1.4–2.0 GeV/c via a nuclear spectral function approach. The approach accounts for incoherent primary <jats:inline-formula> <jats:tex-math><?CDATA $\pi^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114106_M5.jpg" xlink:type="simple" /> </jats:inline-formula> meson–proton <jats:inline-formula> <jats:tex-math><?CDATA ${\pi^-}p \to {K^*(892)^+}\Sigma^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114106_M6.jpg" xlink:type="simple" /> </jats:inline-formula> production processes as well as the influence of the scalar <jats:inline-formula> <jats:tex-math><?CDATA $K^*(892)^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114106_M7.jpg" xlink:type="simple" /> </jats:inline-formula>–nucleus potential (or the <jats:inline-formula> <jats:tex-math><?CDATA $K^*(892)^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114106_M8.jpg" xlink:type="simple" /> </jats:inline-formula> in-medium mass shift) on these processes. We calculate the absolute differential and total cross sections for the production of <jats:inline-formula> <jats:tex-math><?CDATA $K^*(892)^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114106_M9.jpg" xlink:type="simple" /> </jats:inline-formula> mesons from carbon and tungsten nuclei at laboratory angles of 0 <jats:inline-formula> <jats:tex-math><?CDATA $^{\circ}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114106_M10.jpg" xlink:type="simple" /> </jats:inline-formula>–45 <jats:inline-formula> <jats:tex-math><?CDATA $^{\circ}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114106_M11.jpg" xlink:type="simple" /> </jats:inline-formula> and at the aforementioned momenta in five scenarios for the aforenoted shift. We show that the <jats:inline-formula> <jats:tex-math><?CDATA $K^*(892)^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114106_M12.jpg" xlink:type="simple" /> </jats:inline-formula> momentum distributions and their excitation functions (absolute and relative) possess a high sensitivity to changes in the in-medium <jats:inline-formula> <jats:tex-math><?CDATA $K^*(892)^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114106_M13.jpg" xlink:type="simple" /> </jats:inline-formula>mass shift in the low-momentum region of 0.1–0.6 GeV/c. Therefore, the measurement of such observables in a dedicated experiment at the GSI pion beam facility in the near-threshold momentum domain will allow us to get valuable information on the <jats:inline-formula> <jats:tex-math><?CDATA $K^*(892)^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_114106_M14.jpg" xlink:type="simple" /> </jats:inline-formula> in-medium properties. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114106
Prediction of moment of inertia of rotating nuclei *
Mohd Kh. M. Abu El Sheikh; A. A. Okhunov; H. Abu Kassim; M. U. Khandaker
<jats:title>Abstract</jats:title> <jats:p>In this study, the mathematical expression formulated by Bohr for the moment of inertia of even-even nuclei based on the hydrodynamical model is modified. The modification pertains to the kinetic energy of the surface oscillations, including the second and third terms of the <jats:italic>R</jats:italic>-expansion as well as the first term, which had already been modified by Bohr. Therefore, this work can be considered a continuation and support of Bohr's hydrodynamic model. The procedure yields a Bohr formula to be multiplied by a factor that depends on the deformation parameter. Bohr's (modified) formula is examined by applying it on axially symmetric even-even nuclei with atomic masses ranging between 150 and 190 as well as on some triaxial symmetry nuclei. In this paper, the modification of Bohr's formula is discussed, including information about the stability of this modification and the second and third terms of the <jats:italic>R</jats:italic>-expansion in Bohr's formula. The results of the calculation are compared with the experimental data and Bohr's results recorded earlier. The results obtained are in good agreement with experimental data, with a ratio of approximately 0.7, and are better than those of the unmodified ones. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114107
Modified astrophysical S-factor of 12C+12C fusion reaction at sub-barrier energies *
Y. J. Li; X. Fang; B. Bucher; K. A. Li; L. H. Ru; X. D. Tang
<jats:title>Abstract</jats:title> <jats:p>The <jats:sup>12</jats:sup>C+<jats:sup>12</jats:sup>C fusion reaction plays a crucial role in stellar evolution and explosions. Its main open reaction channels include <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_115001_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:italic>p</jats:italic>, <jats:italic>n</jats:italic>, and <jats:sup>8</jats:sup>Be. Despite more than a half century of efforts, large differences remain among the experimental data of this reaction measured using various techniques. In this work, we analyze the existing data using a statistical model. Our calculation shows the following: 1) the relative systematic uncertainties of the predicted branching ratios decrease as the predicted ratios increase; 2) the total modified astrophysical <jats:italic>S</jats:italic>-factors (<jats:italic>S</jats:italic> <jats:sup>*</jats:sup> factors) of the <jats:italic>p</jats:italic> and <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_115001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> channels can be obtained by summing the <jats:italic>S</jats:italic> <jats:sup>*</jats:sup> factors of their corresponding ground-state transitions and the characteristic <jats:inline-formula> <jats:tex-math><?CDATA $\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_115001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> rays, while taking into account the contributions of the missing channels to the latter. After applying corrections based on branching ratios predicted by the statistical model, an agreement is achieved among the different data sets at <jats:italic>E</jats:italic> <jats:sub>cm</jats:sub>> 4 MeV, while some discrepancies remain at lower energies, suggesting the need for better measurements in the near future. We find that the<jats:italic>S</jats:italic> <jats:sup>*</jats:sup> factor recently obtained from an indirect measurement is inconsistent with the direct measurement value at energies below 2.6 MeV. We recommend upper and lower limits for the <jats:sup>12</jats:sup>C+<jats:sup>12</jats:sup>C <jats:italic>S</jats:italic> <jats:sup>*</jats:sup> factor based on the existing models. A new <jats:sup>12</jats:sup>C+<jats:sup>12</jats:sup>C reaction rate is also recommended. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 115001
Horizon thermodynamics in theory *
Haiyuan Feng; Rong-Jia Yang
<jats:title>Abstract</jats:title> <jats:p>We investigate whether the new horizon first law still holds in <jats:inline-formula> <jats:tex-math><?CDATA $f(R,R^{\mu\nu}R_{\mu\nu})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_115101_M2.jpg" xlink:type="simple" /> </jats:inline-formula> theory. For this complicated theory, we first determine the entropy of a black hole by using the Wald method, and then derive the energy of the black hole by using the new horizon first law, the degenerate Legendre transformation, and the gravitational field equations. For application, we consider the quadratic-curvature gravity, and first calculate the entropy and energy of a static spherically symmetric black hole, which are in agreement with the results obtained in the literature for a Schwarzschild-(A)dS black hole. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 115101
Cosmic acceleration caused by the extra-dimensional evolution in a generalized Randall-Sundrum model *
Guang-Zhen Kang; De-Sheng Zhang; Chao Shi; Long Du; Dan Shan; Hong-Shi Zong
<jats:title>Abstract</jats:title> <jats:p>We investigate an (n+1)-dimensional generalized Randall-Sundrum model with an anisotropic metric which has three different scale factors. One obtains a positive effective cosmological constant <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{\rm eff}\sim10^{-124}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_115102_M2.jpg" xlink:type="simple" /> </jats:inline-formula>(in Planck units), which only needs a solution <jats:inline-formula> <jats:tex-math><?CDATA $ kr\simeq50-80$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_115102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> without fine tuning. Both the visible and hidden brane tensions are positive, which renders the two branes stable. Then, we find that the Hubble parameter is close to a constant in a large region near its minimum, thus causing the acceleration of the universe. Meanwhile, the scale of extra dimensions is smaller than the observed scale but greater than the Planck length. This may suggest that the observed present acceleration of the universe is caused by the extra-dimensional evolution. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 115102
Null geodesics, quasinormal modes, and thermodynamic phase transition for charged black holes in asymptotically flat and dS spacetimes *
Shao-Wen Wei; Yu-Xiao Liu
<jats:title>Abstract</jats:title> <jats:p>A numerical study has indicated that there exists a relation between the quasinormal modes and the Davies point for a black hole. In this paper, we analytically study this relation for charged Reissner-Nordström black holes in asymptotically flat and de Sitter (dS) spacetimes in the eikonal limit, under which the quasinormal modes can be obtained from the null geodesics using the angular velocity <jats:inline-formula> <jats:tex-math><?CDATA $\Omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_115103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and the Lyapunov exponent <jats:inline-formula> <jats:tex-math><?CDATA $\lambda$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_115103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> of the photon sphere. Both in asymptotically flat and dS spacetimes, we observe spiral-like shapes in the complex quasinormal mode plane. However, the starting point of the shapes does not coincide with the Davies point. Nevertheless, we find a new relation in which the Davies point exactly meets the maximum temperature <jats:italic>T</jats:italic> in the <jats:italic>T</jats:italic>- <jats:inline-formula> <jats:tex-math><?CDATA $\Omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_115103_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:italic>T</jats:italic>- <jats:inline-formula> <jats:tex-math><?CDATA $\lambda$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_11_115103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> planes. In a higher-dimensional asymptotically flat spacetime, although there is no spiral-like shape, such a relation still holds. Therefore, we provide a new relation between black hole thermodynamics and dynamics in the eikonal limit. Applying this relation, we can test the thermodynamic property of a black hole using the quasinormal modes. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 115103
Search for invisible decays of the Higgs boson produced at the CEPC *
Yuhang Tan; Xin Shi; Ryuta Kiuchi; Manqi Ruan; Maoqiang Jing; Dan Yu; Kaili Zhang; Xinchou Lou; Xin Mo; Gang Li; Susmita Jyotishmati
<jats:title>Abstract</jats:title> <jats:p>The Circular Electron Positron Collider (CEPC), proposed as a future Higgs boson factory, will operate at a center-of-mass energy of 240 GeV and will accumulate 5.6 ab<jats:sup>−1</jats:sup> of integrated luminosity in 7 years. In this study, we estimate the upper limit of BR( <jats:inline-formula> <jats:tex-math><?CDATA $H \rightarrow$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_12_123001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> inv) for three independent channels, including two leptonic channels and one hadronic channel, at the CEPC. Based on the full simulation analysis, the upper limit of BR( <jats:inline-formula> <jats:tex-math><?CDATA $H \rightarrow$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_12_123001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> inv) could reach 0.26% at the 95% confidence level. In the Stand Model (SM), the Higgs boson can only decay invisibly via <jats:inline-formula> <jats:tex-math><?CDATA $H\rightarrow ZZ^\ast\rightarrow\nu\overline{\nu}\nu\overline{\nu}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_12_123001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, so any evidence of invisible Higgs decays that exceed BR( <jats:inline-formula> <jats:tex-math><?CDATA $H \rightarrow$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_12_123001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> inv) of the SM will indicate a phenomenon that is beyond the SM (BSM). The invariant mass resolution of the visible hadronic decay system <jats:inline-formula> <jats:tex-math><?CDATA $ZH(Z \rightarrow qq$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_12_123001_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ H \rightarrow$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_12_123001_M6.jpg" xlink:type="simple" /> </jats:inline-formula> inv) is simulated, and the physics requirement at the CEPC detector for reaching this is given. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 123001
Anomalous decay and its interference effects on gluon–gluon contribution at the LHC *
Hua-Rong He; Xia Wan; You-Kai Wang
<jats:title>Abstract</jats:title> <jats:p>We calculate the spinor helicity amplitudes of anomalous <jats:inline-formula> <jats:tex-math><?CDATA $H\to ZZ \to 4\ell$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_12_123101_M2.jpg" xlink:type="simple" /> </jats:inline-formula> decay. After embedding these analytic formulas into the MCFM package, we study the interference effects between the anomalous <jats:inline-formula> <jats:tex-math><?CDATA $gg\to H\to ZZ \to 4\ell$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_12_123101_M3.jpg" xlink:type="simple" /> </jats:inline-formula> process and the SM processes, which are indispensable in the Higgs off-shell region. Subsequently, the constraints on the anomalous couplings are estimated using LHC experimental data. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 123101