Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Black holes in asymptotic safety with higher derivatives: accretion and stability analysis

Fabián H. Zuluaga; Luis A. Sánchez

<jats:title>Abstract</jats:title> <jats:p>We review steady spherically symmetric accretion onto a renormalization group improved Schwarzschild space-time, which is a solution to an asymptotically safe theory (AS) containing high-derivative terms. We use a Hamiltonian dynamical system approach for the analysis of the accretion of four types of isothermal test fluids: ultra-stiff fluid, ultra-relativistic fluid, radiation fluid, and sub-relativistic fluid. An important outcome of our study is that, contrary to the claim in a recent work, there are physical solutions for the accretion of an ultra-relativistic fluid in AS, which include subsonic, supersonic, and transonic regimes. Furthermore, we study quantum corrections to the known stability of the accretion in general relativity (GR). To this end, we use a perturbative procedure based on the continuity equation with the mass accretion rate being the perturbed quantity. Two classes of perturbations are studied: standing and traveling waves. We find that quantum gravity effects either enhance or diminish the stability of the accretion depending on the type of test fluid and the radial distance to the central object.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 075102

Dark sector production and baryogenesis from not quite black holes *

Ufuk Aydemir; Jing Ren

<jats:title>Abstract</jats:title> <jats:p>Primordial black holes have been considered attractive dark matter candidates, whereas some of the predictions rely heavily on the near-horizon physics that remains to be tested experimentally. As a concrete alternative, thermal 2-2-holes closely resemble black holes without event horizons. Being a probable endpoint of gravitational collapse, they provide a solution to the information loss problem but also naturally result in stable remnants. Previously, we have considered primordial 2-2-hole remnants as dark matter. Owing to the strong constraints from a novel phenomenon associated with remnant mergers, only small remnants with mass approximate to the Planck mass can constitute all dark matter. In this paper, we examine the scenario in which the majority of dark matter consists of particles produced by the evaporation of primordial 2-2-holes, whereas the remnant contribution is secondary. The products with sufficiently light mass may contribute to the number of relativistic degrees of freedom in the early universe, which we also calculate. Moreover, 2-2-hole evaporation can produce particles that are responsible for the baryon asymmetry. We observe that baryogenesis through direct <jats:italic>B</jats:italic>-violating decays or through leptogenesis can both be realized. Overall, the viable parameter space for the Planck remnant scenario is similar to that of primordial black holes with Planck remnants. However, heavier remnants result in different predictions, and the viable parameter space remains large even when the remnant abundance is small. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 075103

Search for dark matter production in association with the Z'boson at the LHC in pp collisions at = 8 TeV using Monte Carlo simulations *

S. Elgammal; M. A. Louka; A. Y. Ellithi; M. T. Hussein

<jats:title>Abstract</jats:title> <jats:p>This analysis evaluates the possibility of the search for Dark Matter (DM) particles using events with a <jats:italic>Z</jats:italic> <jats:inline-formula> <jats:tex-math><?CDATA $ ^{\prime} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> heavy gauge boson and a large missing transverse momentum at the Large Hadron Collider (LHC). We consider the muonic decay of <jats:italic>Z</jats:italic> <jats:inline-formula> <jats:tex-math><?CDATA $ ^{\prime} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. The analyzed Monte Carlo samples were the Open simulated files produced by the Compact Muon Solenoid (CMS) collaboration for proton-proton collisions, corresponding to an integrated luminosity of the LHC run-I with 19.7 fb <jats:inline-formula> <jats:tex-math><?CDATA $ ^{-1} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s} = $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> 8 TeV. Two scenarios, namely a simplified benchmark scenario, called Dark Higgs, and the effective field theory (EFT) formalism, were used for interpretations. Limits were set on <jats:italic>Z</jats:italic> <jats:inline-formula> <jats:tex-math><?CDATA $ ^{\prime} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083001_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, dark matter masses, and the cutoff scale of the EFT. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 083001

A Bayesian-based approach for extracting the pion charge radius from electron-electron scattering data

Alam A Hidayat; Bens Pardamean

<jats:title>Abstract</jats:title> <jats:p>In this study, we utilize a potentially versatile Bayesian parameter approach to compute the value of the pion charge radius and quantify its uncertainty from several experimental <jats:inline-formula> <jats:tex-math><?CDATA $ e^{+}e^{-}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> datasets for the pion vector form factor. We employ dispersion relations to model the pion vector form factor to extract the radius. Nested model selection is used to determine the order of polynomial appearing in the form factor formulation that can be supported by the data, adapting the computation of Bayes evidence and Bayesian effective complexity based on Occam's razor. Our findings indicate that five out of six used datasets favor the nine-parameter model for radius extraction, and accordingly, we average the radii from the datasets. Despite some inconsistencies with the most updated radius values, our approach may serve as a more intuitive method of addressing parameter estimations in dispersion theory. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 083101

Universal time delay in static spherically symmetric spacetimes for null and timelike signals *

Haotian Liu; Junji Jia

<jats:title>Abstract</jats:title> <jats:p>A perturbative method of computing the total travel time of both null and lightlike rays in arbitrary static spherically symmetric spacetimes in the weak field limit is proposed. The resultant total time takes a quasi-series form of the impact parameter. The coefficient of this series at a certain order <jats:italic>n</jats:italic> is shown to be determined by the asymptotic expansion of the metric functions to the order <jats:inline-formula> <jats:tex-math><?CDATA $ n+1 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083102_M2.jpg" xlink:type="simple" /> </jats:inline-formula>. For the leading order(s), the time delay, as well as the difference between the time delays of two types of relativistic signals, is shown to take a universal form for all SSS spacetimes. This universal form depends on the mass <jats:italic>M</jats:italic> and a post-Newtonian parameter <jats:inline-formula> <jats:tex-math><?CDATA $ \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> of the spacetime. The analytical result is numerically verified using the central black hole of galaxy M87 as the gravitational lensing center. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 083102

Impact of lepton p T threshold on charge asymmetry predictions for inclusive W boson production in pp collisions at 13 TeV

Kadir Ocalan

<jats:title>Abstract</jats:title> <jats:p>This paper presents the impact of the lepton transverse momentum <jats:inline-formula> <jats:tex-math><?CDATA $p^{l}_{T}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> threshold on the <jats:inline-formula> <jats:tex-math><?CDATA $W$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> boson charge asymmetry predictions in perturbative QCD for the inclusive <jats:inline-formula> <jats:tex-math><?CDATA $W^{\pm}+X \rightarrow l^{\pm} \nu +X$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M3.jpg" xlink:type="simple" /> </jats:inline-formula> production in proton-proton ( <jats:inline-formula> <jats:tex-math><?CDATA $pp$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M4.jpg" xlink:type="simple" /> </jats:inline-formula>) collisions. The predictions are obtained at various low- <jats:inline-formula> <jats:tex-math><?CDATA $p^{l}_{T}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M5.jpg" xlink:type="simple" /> </jats:inline-formula> thresholds <jats:inline-formula> <jats:tex-math><?CDATA $p^{l}_{T} \gt $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M6.jpg" xlink:type="simple" /> </jats:inline-formula> 20, 25, 30, and 40 GeV in a fiducial region encompassing both the central and forward detector acceptances in terms of the lepton pseudorapidity <jats:inline-formula> <jats:tex-math><?CDATA $0 \leq \eta_{l} \leq 4.5$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M7.jpg" xlink:type="simple" /> </jats:inline-formula>. The predicted distributions for the lepton charge asymmetry, which is defined by <jats:inline-formula> <jats:tex-math><?CDATA $\eta_{l}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M8.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $A_{\eta_{l}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M9.jpg" xlink:type="simple" /> </jats:inline-formula>), at the next-to-next-to-leading order (NNLO) accuracy are compared with the CMS and LHCb data at 8 TeV center-of-mass collision energy. The 8 TeV predictions reproduce the data fairly well within the quoted uncertainties. The predictions from the CT14 parton distribution function (PDF) model are in a slightly better agreement with the data over the other PDF sets that are tested. The 13 TeV predictions using various <jats:inline-formula> <jats:tex-math><?CDATA $p^{l}_{T}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M10.jpg" xlink:type="simple" /> </jats:inline-formula> thresholds are reported for <jats:inline-formula> <jats:tex-math><?CDATA $A_{\eta_{l}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M11.jpg" xlink:type="simple" /> </jats:inline-formula> and the charge asymmetries that are defined in terms of the differential cross sections in bins of the <jats:inline-formula> <jats:tex-math><?CDATA $W$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M12.jpg" xlink:type="simple" /> </jats:inline-formula> boson rapidity <jats:inline-formula> <jats:tex-math><?CDATA $y_{W}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M13.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $A_{y_{W}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M14.jpg" xlink:type="simple" /> </jats:inline-formula>) and transverse momentum <jats:inline-formula> <jats:tex-math><?CDATA $p^{W}_{T}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M15.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $A_{p^{W}_{T}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M16.jpg" xlink:type="simple" /> </jats:inline-formula>). The NNLO predictions for the <jats:inline-formula> <jats:tex-math><?CDATA $A_{\eta_{l}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M17.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $A_{y_{W}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M18.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $A_{p^{W}_{T}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M19.jpg" xlink:type="simple" /> </jats:inline-formula> distributions are assessed to be in close correlation with the <jats:inline-formula> <jats:tex-math><?CDATA $p^{l}_{T}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M20.jpg" xlink:type="simple" /> </jats:inline-formula> value. The <jats:inline-formula> <jats:tex-math><?CDATA $A_{\eta_{l}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M21.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $A_{y_{W}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M22.jpg" xlink:type="simple" /> </jats:inline-formula> distributions are particularly shown to be more correlated at a higher <jats:inline-formula> <jats:tex-math><?CDATA $p^{l}_{T}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M23.jpg" xlink:type="simple" /> </jats:inline-formula> threshold. The <jats:inline-formula> <jats:tex-math><?CDATA $A_{p^{W}_{T}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M24.jpg" xlink:type="simple" /> </jats:inline-formula> distributions are also reported from the merged predictions with improved accuracy by the inclusion of the next-to-next-to-next-to-leading logarithm (N<jats:sup>3</jats:sup>LL) corrections, i.e., at NNLO+N<jats:sup>3</jats:sup>LL. The predicted distributions from various <jats:inline-formula> <jats:tex-math><?CDATA $p^{l}_{T}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M25.jpg" xlink:type="simple" /> </jats:inline-formula> thresholds represent a finer probe in terms of the capability to provide more constraints on the ratio of <jats:inline-formula> <jats:tex-math><?CDATA $u$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M26.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $d$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M27.jpg" xlink:type="simple" /> </jats:inline-formula> quark distribution functions in the parton momentum fraction range <jats:inline-formula> <jats:tex-math><?CDATA $10^{-4} \lt x \lt 1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083103_M28.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 083103

Study of C parity violating and strangeness changing J/ψ → PP weak decays *

Yueling Yang; Junliang Lu; Mingfei Duan; Jinshu Huang; Junfeng Sun

<jats:title>Abstract</jats:title> <jats:p>Although <jats:inline-formula> <jats:tex-math><?CDATA $ J/{\psi} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M1.jpg" xlink:type="simple" /> </jats:inline-formula> weak decays are rare, they are possible within the standard model of elementary particles. Inspired by the potential prospects of the future intensity frontier, the <jats:italic>C</jats:italic> parity violating <jats:inline-formula> <jats:tex-math><?CDATA $ J/{\psi} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M2.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ {\to} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ {\pi}{\eta}^{({\prime})} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ {\eta}{\eta}^{\prime} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> decays and the strangeness changing <jats:inline-formula> <jats:tex-math><?CDATA $ J/{\psi} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M6.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ {\to} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M7.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ {\pi}K $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ K{\eta}^{({\prime})} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M9.jpg" xlink:type="simple" /> </jats:inline-formula> decays are studied via the perturbative QCD approach. It is determined that the <jats:inline-formula> <jats:tex-math><?CDATA $ J/{\psi} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M10.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ {\to} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M11.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ {\eta}{\eta}^{\prime} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M12.jpg" xlink:type="simple" /> </jats:inline-formula> decays have relatively large branching ratios, approximately on the order of <jats:inline-formula> <jats:tex-math><?CDATA $ 10^{-11} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083104_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, which might be within the measurement capability and sensitivity of the future STCF experiment. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 083104

Dark matter, Z′, and vector-like quark at the LHC and b → sμμ anomaly *

Wei Chao; Hong-Xin Wang; Lei Wang; Yang Zhang

<jats:title>Abstract</jats:title> <jats:p>Combining the <jats:inline-formula> <jats:tex-math><?CDATA $ b\to s\mu^+\mu^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M1.jpg" xlink:type="simple" /> </jats:inline-formula> anomaly and dark matter observables, we study the capability of the LHC to test dark matter, <jats:inline-formula> <jats:tex-math><?CDATA $ Z^{\prime} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, and a vector-like quark. We focus on a local <jats:inline-formula> <jats:tex-math><?CDATA $ U(1)_{L_\mu-L_\tau} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M3.jpg" xlink:type="simple" /> </jats:inline-formula> model with a vector-like <jats:inline-formula> <jats:tex-math><?CDATA $ SU(2)_L $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M4.jpg" xlink:type="simple" /> </jats:inline-formula> doublet quark <jats:italic>Q</jats:italic> and a complex singlet scalar whose lightest component <jats:inline-formula> <jats:tex-math><?CDATA $ X_I $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M5.jpg" xlink:type="simple" /> </jats:inline-formula> is a candidate of dark matter. After imposing relevant constraints, we find that the <jats:inline-formula> <jats:tex-math><?CDATA $ b\to s\mu^+\mu^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M6.jpg" xlink:type="simple" /> </jats:inline-formula> anomaly and the relic abundance of dark matter favor <jats:inline-formula> <jats:tex-math><?CDATA $ m_{X_I} \lt 350 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M7.jpg" xlink:type="simple" /> </jats:inline-formula> GeV and <jats:inline-formula> <jats:tex-math><?CDATA $ m_{Z^{\prime}} \lt 450 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M8.jpg" xlink:type="simple" /> </jats:inline-formula> GeV for <jats:inline-formula> <jats:tex-math><?CDATA $ m_Q \lt $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M9.jpg" xlink:type="simple" /> </jats:inline-formula> 2 TeV and <jats:inline-formula> <jats:tex-math><?CDATA $ m_{X_R} \lt $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M10.jpg" xlink:type="simple" /> </jats:inline-formula> 2 TeV (the heavy partner of <jats:inline-formula> <jats:tex-math><?CDATA $ m_{X_I} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M11.jpg" xlink:type="simple" /> </jats:inline-formula>). Current searches for jets and missing transverse momentum at the LHC sizably reduce the mass ranges of the vector-like quark, and <jats:inline-formula> <jats:tex-math><?CDATA $ m_Q $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M12.jpg" xlink:type="simple" /> </jats:inline-formula> is required to be larger than 1.7 TeV. Finally, we discuss the possibility of probing these new particles at the high luminosity LHC via the QCD process <jats:inline-formula> <jats:tex-math><?CDATA $ pp \to D\bar{D} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M13.jpg" xlink:type="simple" /> </jats:inline-formula> followed by <jats:inline-formula> <jats:tex-math><?CDATA $ D\to s (b) X_I $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M14.jpg" xlink:type="simple" /> </jats:inline-formula> , <jats:inline-formula> <jats:tex-math><?CDATA $ D\to s (b) Z'X_I $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M15.jpg" xlink:type="simple" /> </jats:inline-formula>, and then <jats:inline-formula> <jats:tex-math><?CDATA $ Z'\to $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M16.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ \mu^+\mu^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M16-1.jpg" xlink:type="simple" /> </jats:inline-formula>. Taking a benchmark point of <jats:inline-formula> <jats:tex-math><?CDATA $ m_Q $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M17.jpg" xlink:type="simple" /> </jats:inline-formula> = 1.93 TeV, <jats:inline-formula> <jats:tex-math><?CDATA $ m_{Z^\prime} = 170 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M18.jpg" xlink:type="simple" /> </jats:inline-formula> GeV, and <jats:inline-formula> <jats:tex-math><?CDATA $ m_{X_I} = $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M19.jpg" xlink:type="simple" /> </jats:inline-formula> 145 GeV, we perform a detailed Monte Carlo simulation and find that this benchmark point can be accessed at the 14 TeV LHC with an integrated luminosity of 3000 fb <jats:inline-formula> <jats:tex-math><?CDATA $ ^{-1} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_083105_M20.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 083105

High spin states in 71Ga *

Jian Zhong; Li-Tao Deng; Shi-Peng Hu; Xiao-Guang Wu; P. C. Srivastava; A. Saxena; Guang-Sheng Li; Yun Zheng; Cong-Bo Li; Qi-Ming Chen; Chuang-Ye He; Wen-Kui Zhou; Bao-Ji Zhu; Qi-Wen Fang; Hui Hua; Jun-Jie Sun; Hui-Bin Sun; Lin Gan; Hai-Ge Zhao; Qi Luo; Zheng-Xin Wu

<jats:title>Abstract</jats:title> <jats:p>Excited states in the odd-<jats:italic>A</jats:italic> nucleus <jats:sup>71</jats:sup>Ga have been studied via the <jats:sup>70</jats:sup>Zn(<jats:sup>7</jats:sup>Li, <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha2n $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084001_M1.jpg" xlink:type="simple" /> </jats:inline-formula>)<jats:sup>71</jats:sup>Ga fusion-evaporation reaction with incident beam energies of 30 and 35 MeV. The level scheme is established up to spin <jats:inline-formula> <jats:tex-math><?CDATA $ I^{\pi} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> = (29/2<jats:sup>+</jats:sup>) and an excitation energy <jats:inline-formula> <jats:tex-math><?CDATA $ \sim $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> 6.6 MeV. A previously known sequence built on the 9/2<jats:sup>+</jats:sup> state is extended as a novel rotational band originating from the <jats:inline-formula> <jats:tex-math><?CDATA $ \nu (g_{9/2}^2) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> alignment. Furthermore, a negative-parity sequence is also reported. The observed energy levels of <jats:sup>71</jats:sup>Ga have been interpreted in the framework of the nuclear shell model (SM). </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 084001

Novel evidence for the σ-bond linear-chain molecular structure in 14C *

Han-zhou Yu; Jing Li; Yan-Lin Ye; Biao Yang; Cheng-Jian Lin; Hui-Ming Jia; Jian-Ling Lou; Xiao-Fei Yang; T. Baba; Qi-Te Li; Yu-Cheng Ge; Zhi-Huan Li; Hui Hua; Jin-Yan Xu; Zai-Hong Yang; Jun Feng; Hong-Liang Zang; Qiang Liu; Wei Jiang; Yang Liu; Jing-Jing Li; Wei Liu; Shi-Wei Bai; Jie Chen; Jia-Xing Han; Jia-Hao Chen; Kai Ma; Dong-Xi Wang; Lei Yang; Nan-Ru Ma; LI-Jie Sun

<jats:title>Abstract</jats:title> <jats:p>A multi-nucleon transfer and cluster decay experiment, <jats:inline-formula> <jats:tex-math><?CDATA $^7$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M1.jpg" xlink:type="simple" /> </jats:inline-formula>Li( <jats:inline-formula> <jats:tex-math><?CDATA $^{11}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M2.jpg" xlink:type="simple" /> </jats:inline-formula>B, <jats:inline-formula> <jats:tex-math><?CDATA $^{14}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M3.jpg" xlink:type="simple" /> </jats:inline-formula>C <jats:inline-formula> <jats:tex-math><?CDATA $^*\rightarrow\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M4.jpg" xlink:type="simple" /> </jats:inline-formula>+ <jats:inline-formula> <jats:tex-math><?CDATA $^{10}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M5.jpg" xlink:type="simple" /> </jats:inline-formula>Be) <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, is conducted at an incident beam energy of 55 MeV. This reaction channel has a significantly large <jats:italic>Q</jats:italic>-value, which favors populating the high lying resonant states in <jats:inline-formula> <jats:tex-math><?CDATA $^{14}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M7.jpg" xlink:type="simple" /> </jats:inline-formula>C. The decay paths, from these resonances to various states of the final nucleus <jats:inline-formula> <jats:tex-math><?CDATA $^{10}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M8.jpg" xlink:type="simple" /> </jats:inline-formula>Be, can be selected, owing to the experimentally achieved optimal resolution of the <jats:italic>Q</jats:italic>-value spectrum. A number of resonant states are reconstructed from the forward emitting <jats:inline-formula> <jats:tex-math><?CDATA $^{10}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M9.jpg" xlink:type="simple" /> </jats:inline-formula>Be + <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M10.jpg" xlink:type="simple" /> </jats:inline-formula> fragments, and their major molecular structures can be detected according to the selective decay paths and relative decay widths. A state at 22.4(2) MeV validates the previously measured and theoretically predicted band head of the positive-parity <jats:inline-formula> <jats:tex-math><?CDATA $\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M11.jpg" xlink:type="simple" /> </jats:inline-formula>-bond linear-chain molecular band. Two additional resonances at 22.9(2) and 24.2(2) MeV are identified and consistent with the predicted <jats:inline-formula> <jats:tex-math><?CDATA $2^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M12.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $4^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M13.jpg" xlink:type="simple" /> </jats:inline-formula> members of the same molecular band, thus providing novel evidences for the existence of the exotic clustering chain structure in neutron-rich carbon isotopes. A few high energy resonances, which also indicate the presence of the <jats:inline-formula> <jats:tex-math><?CDATA $\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_084002_M14.jpg" xlink:type="simple" /> </jats:inline-formula>-bond molecular structure, are observed; however, further studies are still required to clarify their ascription in band systematics. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 084002