Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

NLO effects for Ω QQQ baryons in QCD Sum Rules *

Ren-Hua Wu; Yu-Sheng Zuo; Ce Meng; Yan-Qing Ma; Kuang-Ta Chao

<jats:title>Abstract</jats:title> <jats:p>We study the triply heavy baryons <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{QQQ}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $(Q=c, b)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> in the QCD sum rules by performing the first calculation of the next-to-leading order (NLO) contribution to the perturbative QCD part of the correlation functions. Compared with the leading order (LO) result, the NLO contribution is found to be very important to the <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{QQQ}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. This is because the NLO not only results in a large correction but also reduces the parameter dependence, making the Borel platform more distinct, especially for the <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{bbb}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> in the <jats:inline-formula> <jats:tex-math><?CDATA $\overline{\rm{MS}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M5.jpg" xlink:type="simple" /> </jats:inline-formula> scheme, where the platform appears only at NLO but not at LO. Particularly, owing to the inclusion of the NLO contribution, the renormalization schemes ( <jats:inline-formula> <jats:tex-math><?CDATA $\overline{\rm{MS}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and On-Shell) dependence and the scale dependence are significantly reduced. Consequently, after including the NLO contribution to the perturbative part in the QCD sum rules, the masses are estimated to be <jats:inline-formula> <jats:tex-math><?CDATA $4.53^{+0.26}_{-0.11}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M7.jpg" xlink:type="simple" /> </jats:inline-formula> GeV for <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{ccc}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M8.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $14.27^{+0.33}_{-0.32}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M9.jpg" xlink:type="simple" /> </jats:inline-formula> GeV for <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{bbb}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, where the results are obtained at <jats:inline-formula> <jats:tex-math><?CDATA $\mu=M_B$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M11.jpg" xlink:type="simple" /> </jats:inline-formula> with errors including those from the variation of the renormalization scale <jats:italic>μ</jats:italic> in the range <jats:inline-formula> <jats:tex-math><?CDATA $(0.8-1.2) M_B$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M12.jpg" xlink:type="simple" /> </jats:inline-formula>. A careful study of the <jats:italic>μ</jats:italic> dependence in a wider range is further performed, which shows that the LO results are very sensitive to the choice of <jats:italic>μ</jats:italic> whereas the NLO results are considerably better. In addition to the <jats:inline-formula> <jats:tex-math><?CDATA $\mu=M_B$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M13.jpg" xlink:type="simple" /> </jats:inline-formula> result, a more stable value, (4.75-4.80) GeV, for the <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{ccc}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M14.jpg" xlink:type="simple" /> </jats:inline-formula> mass is found in the range of <jats:inline-formula> <jats:tex-math><?CDATA $\mu=(1.2-2.0) M_B$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_M15.jpg" xlink:type="simple" /> </jats:inline-formula>, which should be viewed as a more relevant prediction in our NLO approach because of <jats:inline-formula> <jats:tex-math><?CDATA $ \mu $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093103_Z-20210729145901.jpg" xlink:type="simple" /> </jats:inline-formula> dependence. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093103

X(2900) in a chiral quark model *

Yue Tan; Jialun Ping

<jats:title>Abstract</jats:title> <jats:p>Recently, the LHCb Collaboration reported their observation of the first two fully open-flavor tetraquark states named <jats:inline-formula> <jats:tex-math><?CDATA $ X_0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M1.jpg" xlink:type="simple" /> </jats:inline-formula>(2900) and <jats:inline-formula> <jats:tex-math><?CDATA $ X_1 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M2.jpg" xlink:type="simple" /> </jats:inline-formula>(2900) with unknown parity. Inspired by the report, we consider all the possible four-quark candidates for <jats:italic>X</jats:italic>(2900), which include the molecular structure, diquark structure, and their coupling in a chiral quark model via the Gaussian expansion method. To identify the genuine resonances, the real-scaling method (stabilization method) was employed. Our results show that five possible resonances, <jats:inline-formula> <jats:tex-math><?CDATA $ R_0(2914) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> with <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma = 42 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> MeV, <jats:inline-formula> <jats:tex-math><?CDATA $ R_1(2906) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M6.jpg" xlink:type="simple" /> </jats:inline-formula> with <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma = 29 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M7.jpg" xlink:type="simple" /> </jats:inline-formula> MeV, <jats:inline-formula> <jats:tex-math><?CDATA $ R_1(2912) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M8.jpg" xlink:type="simple" /> </jats:inline-formula> with <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma = 10 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M9.jpg" xlink:type="simple" /> </jats:inline-formula> MeV, <jats:inline-formula> <jats:tex-math><?CDATA $ R_J(2920) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M10.jpg" xlink:type="simple" /> </jats:inline-formula> with <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma = 9 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M11.jpg" xlink:type="simple" /> </jats:inline-formula> MeV, and <jats:inline-formula> <jats:tex-math><?CDATA $ R_J(2842) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M12.jpg" xlink:type="simple" /> </jats:inline-formula> with <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma = 24 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M13.jpg" xlink:type="simple" /> </jats:inline-formula> MeV, originate in the <jats:inline-formula> <jats:tex-math><?CDATA $ cs\bar{q}\bar{q} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M14.jpg" xlink:type="simple" /> </jats:inline-formula> system. Compared with experimental data, <jats:inline-formula> <jats:tex-math><?CDATA $ R_0(2914) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M15.jpg" xlink:type="simple" /> </jats:inline-formula> with <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma = 42 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M16.jpg" xlink:type="simple" /> </jats:inline-formula> MeV may be an optimal <jats:inline-formula> <jats:tex-math><?CDATA $ X_0(2900) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M17.jpg" xlink:type="simple" /> </jats:inline-formula> candidate. However, none of the resonances have a similar width for <jats:inline-formula> <jats:tex-math><?CDATA $ X_1(2900) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093104_M18.jpg" xlink:type="simple" /> </jats:inline-formula>. Hence, further study is required. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093104

Precise evaluation of and axion-like particle production *

Shi-Yuan Li; Zhen-Yang Li; Peng-Cheng Lu; Zong-Guo Si

<jats:title>Abstract</jats:title> <jats:p>We study the decay of the SM Higgs boson to a massive charm quark pair at the next-to-next-to-leading order QCD and next-to-leading order electroweak. At the second order of QCD coupling, we consider the exact calculation of flavour-singlet contributions where the Higgs boson couples to the internal top and bottom quark. Helpful information on the running mass effects related to Yukawa coupling may be obtained by analyzing this process. High precision production for <jats:inline-formula> <jats:tex-math><?CDATA $ h\to c\bar{c}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093105_M2.jpg" xlink:type="simple" /> </jats:inline-formula> within the SM makes it possible to search for new physics that may induce relatively large interactions related to the charm quark. As an example, we evaluate the axion-like particle associate production with a charm quark pair in the Higgs decay and obtain some constraints for the corresponding parameters under some assumptions. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093105

Scalar neutrino dark matter in the BLMSSM *

Ming-Jie Zhang; Shu-Min Zhao; Xing-Xing Dong; Zhong-Jun Yang; Tai-Fu Feng

<jats:title>Abstract</jats:title> <jats:p>The BLMSSM is an extension of the minimal supersymmetric standard model (MSSM). Its local gauge group is <jats:inline-formula> <jats:tex-math><?CDATA $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_B \times U(1)_L$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093106_M.jpg" xlink:type="simple" /> </jats:inline-formula>. Supposing the lightest scalar neutrino is a dark matter candidate, we study the relic density and the spin independent cross section of sneutrino scattering off a nucleon. We calculate the numerical results in detail and find a suitable parameter space. The numerical discussion can confine the parameter space and provide a reference for dark matter research. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093106

Probing top-philic new physics via four-top-quark production *

Qing-Hong Cao; Jun-Ning Fu; Yandong Liu; Xiao-Hu Wang; Rui Zhang

<jats:title>Abstract</jats:title> <jats:p>We explore constraints on various new physics resonances from four top-quark production based on current experimental data. Both light and heavy resonances are studied in this work. A comparison of the full width effect and narrow width approximation is also presented.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093107

Probing magnetic moment operators in production and rare decay *

Qing-Hong Cao; Hao-Ran Jiang; Bin Li; Yandong Liu; Guojin Zeng

<jats:title>Abstract</jats:title> <jats:p>The magnetic moment ( <jats:inline-formula> <jats:tex-math><?CDATA $ a_\gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093108_M3.jpg" xlink:type="simple" /> </jats:inline-formula>) and weak magnetic moment ( <jats:inline-formula> <jats:tex-math><?CDATA $ a_W $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093108_M4.jpg" xlink:type="simple" /> </jats:inline-formula>) of charged leptons and quarks are sensitive to quantum effects of new physics heavy resonances. In effective field theory, <jats:inline-formula> <jats:tex-math><?CDATA $ a_\gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093108_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ a_W $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093108_M6.jpg" xlink:type="simple" /> </jats:inline-formula> are induced by two independent operators. Therefore, one has to measure both <jats:inline-formula> <jats:tex-math><?CDATA $ a_\gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093108_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ a_W $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093108_M8.jpg" xlink:type="simple" /> </jats:inline-formula> to shed light on new physics. The <jats:inline-formula> <jats:tex-math><?CDATA $ a_W $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093108_M9.jpg" xlink:type="simple" /> </jats:inline-formula>'s of the SM fermions are measured at the LEP. In this work, we analyze the contributions from magnetic and weak magnetic moment operators in the processes of <jats:inline-formula> <jats:tex-math><?CDATA $ pp\to H \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093108_M10.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ gg\to H \to \tau^+ \tau^- \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093108_M11.jpg" xlink:type="simple" /> </jats:inline-formula> at the High-Luminosity Large Hadron Collider. We demonstrate that the two processes can cover most of the parameter space that cannot be probed at the LEP. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093108

New physics and two boosted W-jets plus missing energy *

Qing-Hong Cao; Nuo Chen; Hao-Ran Jiang; Bin Li; Yandong Liu

<jats:title>Abstract</jats:title> <jats:p>We show that the signature of two boosted <jats:italic>W</jats:italic>-jets plus substantial missing energy is very promising for probing heavy charged resonances ( <jats:inline-formula> <jats:tex-math><?CDATA $X^\pm$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093109_M1.jpg" xlink:type="simple" /> </jats:inline-formula>) through the process of <jats:inline-formula> <jats:tex-math><?CDATA $pp\to X^+X^-\to W^+W^- X^0 X^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093109_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, where <jats:inline-formula> <jats:tex-math><?CDATA $X^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093109_M3.jpg" xlink:type="simple" /> </jats:inline-formula> denotes the dark matter candidate. The hadronic decay mode of the <jats:italic>W</jats:italic> boson is considered to maximize the number of signal events. When the mass split between <jats:inline-formula> <jats:tex-math><?CDATA $X^\pm$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093109_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $X^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093109_M5.jpg" xlink:type="simple" /> </jats:inline-formula> is large, the jet-substructure technique must be utilized to analyze the boosted <jats:italic>W</jats:italic>-jet. Here, we consider the process of chargino pair production at the LHC, i.e., <jats:inline-formula> <jats:tex-math><?CDATA $pp\to \chi_1^+\chi^-_1 \to W^+W^-\chi_1^0\chi_1^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093109_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, and demonstrate that the proposed signature is able to cover more parameter space of <jats:inline-formula> <jats:tex-math><?CDATA $m_{\chi_1^\pm}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093109_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $m_{\chi_1^0}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093109_M8.jpg" xlink:type="simple" /> </jats:inline-formula> than the conventional signature of multiple leptons plus missing energy. More importantly, the signature of interest is not sensitive to the spin of heavy resonances. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093109

Single top quark production with and without a Higgs boson *

Qing-Hong Cao; Hao-ran Jiang; Guojin Zeng

<jats:title>Abstract</jats:title> <jats:p>One method of probing new physics beyond the Standard Model is to check the correlation among higher-dimensional operators in the effective field theory. We examine the strong correlation between the processes <jats:inline-formula> <jats:tex-math><?CDATA $ pp\rightarrow tHq $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093110_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ pp\rightarrow tq $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093110_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, which both depend on the same three operators. The correlation indicates that, according to the data of <jats:inline-formula> <jats:tex-math><?CDATA $ pp\rightarrow tq $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093110_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \sigma_{tHq} = \big[106.8 \pm 64.8\big]\; {\rm fb} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093110_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, which is significantly below the current upper limit <jats:inline-formula> <jats:tex-math><?CDATA $ \sigma_{tHq}\leqslant 900\; {\rm fb} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093110_M5.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093110

Color halo scenario of charmonium-like hybrids *

Yunheng Ma; Wei Sun; Ying Chen; Ming Gong; Zhaofeng Liu

<jats:title>Abstract</jats:title> <jats:p>The internal structures of <jats:inline-formula> <jats:tex-math><?CDATA $J^{PC} = 1^{--}, (0,1,2)^{-+}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093111_M1.jpg" xlink:type="simple" /> </jats:inline-formula> charmonium-like hybrids are investigated under lattice QCD in the quenched approximation. We define the Bethe-Salpeter wave function ( <jats:inline-formula> <jats:tex-math><?CDATA $ \Phi_n(r) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093111_M2.jpg" xlink:type="simple" /> </jats:inline-formula>) in the Coulomb gauge as the matrix element of a spatially extended hybrid-like operator ( <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{c}{c}g $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093111_M3.jpg" xlink:type="simple" /> </jats:inline-formula>) between the vacuum and <jats:italic>n</jats:italic>-th state for each <jats:inline-formula> <jats:tex-math><?CDATA $ J^{PC} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093111_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, with <jats:italic>r</jats:italic> being the spatial separation between a localized <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{c}c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093111_M5.jpg" xlink:type="simple" /> </jats:inline-formula> component and the chromomagnetic strength tensor. These wave functions exhibit some similarities for states with the aforementioned different quantum numbers, and their <jats:italic>r</jats:italic>-behaviors (no node for the ground states and one node for the first excited states) imply that <jats:italic>r</jats:italic> can be a meaningful dynamical variable for these states. Additionally, the mass splittings of the ground states and first excited states of charmonium-like hybrids in these channels are obtained for the first time to be approximately 1.2-1.4 GeV. These results do not support the flux-tube description of heavy-quarkonium-like hybrids in the Born-Oppenheimer approximation. In contrast, a charmonium-like hybrid can be viewed as a “color halo” charmonium for which a relatively localized color octet <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{c}c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093111_M6.jpg" xlink:type="simple" /> </jats:inline-formula> is surrounded by gluonic degrees of freedom, which can readily decay into a charmonium state along with one or more light hadrons. The color halo picture is compatible with the decay properties of <jats:inline-formula> <jats:tex-math><?CDATA $ Y(4260) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093111_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and suggests LHCb and BelleII to search for <jats:inline-formula> <jats:tex-math><?CDATA $ (0,1,2)^{-+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093111_M8.jpg" xlink:type="simple" /> </jats:inline-formula> charmonium-like hybrids in <jats:inline-formula> <jats:tex-math><?CDATA $ \chi_{c0,1,2}\eta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093111_M9.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi \omega (\phi) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093111_M10.jpg" xlink:type="simple" /> </jats:inline-formula> final states. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093111

Lax connections in -deformed integrable field theories *

Bin Chen; Jue Hou; Jia Tian

<jats:title>Abstract</jats:title> <jats:p>In this work, we attempt to construct the Lax connections of <jats:inline-formula> <jats:tex-math><?CDATA $ T\bar{T} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093112_M2.jpg" xlink:type="simple" /> </jats:inline-formula>-deformed integrable field theories in two different ways. With reasonable assumptions, we make an ansatz and find the Lax pairs in the <jats:inline-formula> <jats:tex-math><?CDATA $ T\bar{T} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093112_M3.jpg" xlink:type="simple" /> </jats:inline-formula>-deformed affine Toda theories and the principal chiral model by solving the Lax equations directly. This method is straightforward, but it may be difficult to apply for general models. We then make use of a dynamic coordinate transformation to read the Lax connection in the deformed theory from the undeformed one. We find that once the inverse of the transformation is available, the Lax connection can be read easily. We show the construction explicitly for a few classes of scalar models and find consistency with those determined using the first method. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093112