Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Small shower CORSIKA simulations

Tadeusz Wibig

<jats:title>Abstract</jats:title> <jats:p>Extensive Air Showers (EAS) induced by cosmic ray particles of very low energies, owing to the significantly steep cosmic ray energy spectrum, dominate the secondary particle flux measured by single detectors and small shower arrays. Such arrays connected in extended networks can be used to determine potentially interesting spatial correlations between showers, which may shed new light on the nature of ultra high-energy cosmic rays. The quantitative interpretation of showers recorded by small local arrays requires a methodology that differs from that used by ordinary large EAS arrays operating in the "knee" region and above. We present "small EAS generator," a semi-analytical method for integrating cosmic ray spectra over energies of interest and summing over the mass spectra of primary nuclei in arbitrary detector configurations. Furthermore, we provide results on the EAS electron and muon fluxes and particle density spectra.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 085001

Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle *

F. Aharonian; Q. An; 克古 Axikegu; L.X. Bai; Y.X. Bai; Y.W. Bao; D. Bastieri; X.J. Bi; Y.J. Bi; H. Cai; J.T. Cai; Z. Cao; Z. Cao; J. Chang; J.F. Chang; X.C. Chang; B.M. Chen; J. Chen; L. Chen; L. Chen; L. Chen; M.J. Chen; M.L. Chen; Q.H. Chen; S.H. Chen; S.Z. Chen; T.L. Chen; X.L. Chen; Y. Chen; N. Cheng; Y.D. Cheng; S.W. Cui; X.H. Cui; Y.D. Cui; B.Z. Dai; H.L. Dai; Z.G. Dai; 罗布 Danzengluobu; D. della Volpe; B. D'Ettorre Piazzoli; X.J. Dong; J.H. Fan; Y.Z. Fan; Z.X. Fan; J. Fang; K. Fang; C.F. Feng; L. Feng; S.H. Feng; Y.L. Feng; B. Gao; C.D. Gao; Q. Gao; W. Gao; M.M. Ge; L.S. Geng; G.H. Gong; Q.B. Gou; M.H. Gu; J.G. Guo; X.L. Guo; Y.Q. Guo; Y.Y. Guo; Y.A. Han; H.H. He; H.N. He; J.C. He; S.L. He; X.B. He; Y. He; M. Heller; Y.K. Hor; C. Hou; X. Hou; H.B. Hu; S. Hu; S.C. Hu; X.J. Hu; D.H. Huang; Q.L. Huang; W.H. Huang; X.T. Huang; Z.C. Huang; F. Ji; X.L. Ji; H.Y. Jia; K. Jiang; Z.J. Jiang; C. Jin; D. Kuleshov; K. Levochkin; B.B. Li; C. Li; C. Li; F. Li; H.B. Li; H.C. Li; H.Y. Li; J. Li; K. Li; W.L. Li; X. Li; X. Li; X.R. Li; Y. Li; Y.Z. Li; Z. Li; Z. Li; E.W. Liang; Y.F. Liang; S.J. Lin; B. Liu; C. Liu; D. Liu; H. Liu; H.D. Liu; J. Liu; J.L. Liu; J.S. Liu; J.Y. Liu; M.Y. Liu; R.Y. Liu; S.M. Liu; W. Liu; Y.N. Liu; Z.X. Liu; W.J. Long; R. Lu; H.K. Lv; B.Q. Ma; L.L. Ma; X.H. Ma; J.R. Mao; A. Masood; W. Mitthumsiri; T. Montaruli; Y.C. Nan; B.Y. Pang; P. Pattarakijwanich; Z.Y. Pei; M.Y. Qi; B.Q. Qiao; D. Ruffolo; V. Rulev; A. Sáiz; L. Shao; O. Shchegolev; X.D. Sheng; J.R. Shi; H.C. Song; Yu.V. Stenkin; V. Stepanov; Q.N. Sun; X.N. Sun; Z.B. Sun; P.H.T. Tam; Z.B. Tang; W.W. Tian; B.D. Wang; C. Wang; H. Wang; H.G. Wang; J.C. Wang; J.S. Wang; L.P. Wang; L.Y. Wang; R.N. Wang; W. Wang; W. Wang; X.G. Wang; X.J. Wang; X.Y. Wang; Y.D. Wang; Y.J. Wang; Y.P. Wang; Z. Wang; Z. Wang; Z.H. Wang; Z.X. Wang; D.M. Wei; J.J. Wei; Y.J. Wei; T. Wen; C.Y. Wu; H.R. Wu; S. Wu; W.X. Wu; X.F. Wu; S.Q. Xi; J. Xia; J.J. Xia; G.M. Xiang; G. Xiao; H.B. Xiao; G.G. Xin; Y.L. Xin; Y. Xing; D.L. Xu; R.X. Xu; L. Xue; D.H. Yan; C.W. Yang; F.F. Yang; J.Y. Yang; L.L. Yang; M.J. Yang; R.Z. Yang; S.B. Yang; Y.H. Yao; Z.G. Yao; Y.M. Ye; L.Q. Yin; N. Yin; X.H. You; Z.Y. You; Y.H. Yu; Q. Yuan; H.D. Zeng; T.X. Zeng; W. Zeng; Z.K. Zeng; M. Zha; X.X. Zhai; B.B. Zhang; H.M. Zhang; H.Y. Zhang; J.L. Zhang; J.W. Zhang; L. Zhang; L. Zhang; L.X. Zhang; P.F. Zhang; P.P. Zhang; R. Zhang; S.R. Zhang; S.S. Zhang; X. Zhang; X.P. Zhang; Y. Zhang; Y. Zhang; Y.F. Zhang; Y.L. Zhang; B. Zhao; J. Zhao; L. Zhao; L.Z. Zhao; S.P. Zhao; F. Zheng; Y. Zheng; B. Zhou; H. Zhou; J.N. Zhou; P. Zhou; R. Zhou; X.X. Zhou; C.G. Zhu; F.R. Zhu; H. Zhu; K.J. Zhu; X. Zuo; (The LHAASO Collaboration)

<jats:title>Abstract</jats:title> <jats:p>The first Water Cherenkov detector of the LHAASO experiment (WCDA-1) has been operating since April 2019. The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle. The WCDA-1 achieves a sensitivity of 65 mCU per year, with a statistical threshold of 5 <jats:inline-formula> <jats:tex-math><?CDATA $\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085002_M1.jpg" xlink:type="simple" /> </jats:inline-formula>. To accomplish this, a 97.7% cosmic-ray background rejection rate around 1 TeV and 99.8% around 6 TeV with an approximate photon acceptance of 50% is achieved after applying an algorithm to separate gamma-induced showers. The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45° at 1 TeV and better than 0.2° above 6 TeV, with a pointing accuracy better than 0.05°. These values all match the design specifications. The energy resolution is found to be 33% for gamma rays around 6 TeV. The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 085002

Hawking radiation received at infinity in higher dimensional Reissner-Nordström black hole spacetimes *

Kai Lin; Wei-Liang Qian; Xilong Fan; Bin Wang; Elcio Abdalla

<jats:title>Abstract</jats:title> <jats:p>In this study, we investigate the Hawking radiation in higher dimensional Reissner-Nordström black holes as received by an observer located at infinity. The frequency-dependent transmission rates, which deform the thermal radiation emitted in the vicinity of the black hole horizon, are evaluated numerically. In addition to those in four-dimensional spacetime, the calculations are extended to higher dimensional Reissner-Nordström metrics, and the results are observed to be sensitive to the spacetime dimension to an extent. Generally, we observe that the transmission coefficient practically vanishes when the frequency of the emitted particle approaches zero. It increases with frequency and eventually saturates to a certain value. For four-dimensional spacetime, the above result is demonstrated to be mostly independent of the metric's parameter and the orbital quantum number of the particle, when the location of the event horizon, <jats:inline-formula> <jats:tex-math><?CDATA $ r_h$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085101_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, and the product of the charges of the black hole and the particle <jats:italic>qQ</jats:italic> are known. However, for higher-dimensional scenarios, the convergence becomes more gradual. Moreover, the difference between states with different orbital quantum numbers is observed to be more significant. As the magnitude of the product of charges <jats:italic>qQ</jats:italic> becomes more significant, the transmission coefficient exceeds 1. In other words, the resultant spectral flux is amplified, which results in an accelerated process of black hole evaporation. The relationship of the calculated outgoing transmission coefficient with existing results on the greybody factor is discussed. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 085101

Physical aspects of anisotropic compact stars in gravity with off diagonal tetrad

M. Zubair; Allah Ditta; G. Abbas; Rabia Saleem

<jats:title>Abstract</jats:title> <jats:p>This study addresses the formation of anisotropic compact star models in the background of <jats:inline-formula> <jats:tex-math><?CDATA $f(T,{\cal{T}})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M2.jpg" xlink:type="simple" /> </jats:inline-formula> gravity (where <jats:italic>T</jats:italic> and <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{T}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> represent the torsion and trace of the energy momentum tensor, respectively). <jats:inline-formula> <jats:tex-math><?CDATA $f(T,{\cal{T}})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> gravity is an extension of the <jats:inline-formula> <jats:tex-math><?CDATA $f(T)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> theory, and it allows a general non-minimal coupling between <jats:italic>T</jats:italic> and <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{T}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M6.jpg" xlink:type="simple" /> </jats:inline-formula>. In this setup, we apply Krori and Barua's solution to the static spacetime with the components <jats:inline-formula> <jats:tex-math><?CDATA $\xi=B r^2+c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\Psi=A r^2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M8.jpg" xlink:type="simple" /> </jats:inline-formula>. To develop viable solutions, we select a well-known model <jats:inline-formula> <jats:tex-math><?CDATA $f(T,{\cal{T}})= \alpha T^m+\beta {\cal{T}}+\phi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M9.jpg" xlink:type="simple" /> </jats:inline-formula> (where <jats:italic>α</jats:italic>and <jats:italic>β</jats:italic> are coupling parameters, and <jats:italic>ϕ</jats:italic> indicates the cosmological constant). We adopt the conventional matching of interior and exterior space time to evaluate the unknowns, which are employed in the stellar configuration. We present a comprehensive discussion on the stellar properties to elaborate the anisotropic nature of compact stars corresponding to well-known models: <jats:inline-formula> <jats:tex-math><?CDATA $PSR J1416-2230$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $4U 1608-52$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $Cen X-3$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $EXO 1785-248$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M13.jpg" xlink:type="simple" /> </jats:inline-formula> , and <jats:inline-formula> <jats:tex-math><?CDATA $SMC X-1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M14.jpg" xlink:type="simple" /> </jats:inline-formula>. Via physical analysis, it is observed that the solution of compact spheres satisfy the acceptability criteria, and its models behave optimally and depict stability and consistency, in accordance with <jats:inline-formula> <jats:tex-math><?CDATA $f(T,{\cal{T}})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085102_M15.jpg" xlink:type="simple" /> </jats:inline-formula> gravity. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 085102

Influence of quantum correction on black hole shadows, photon rings, and lensing rings *

Jun Peng; Minyong Guo; Xing-Hui Feng

<jats:title>Abstract</jats:title> <jats:p>We calculate photon sphere <jats:inline-formula> <jats:tex-math><?CDATA $r_{ph}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and critical curve <jats:inline-formula> <jats:tex-math><?CDATA $b_c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_8_085103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> for a quantum corrected Schwarzschild black hole, finding that they violate universal inequalities proved for asymptotically flat black holes that satisfy the null energy condition in the framework of Einstein gravity. This violation seems to be a common phenomenon when considering quantum modification of Einstein gravity. Furthermore, we study the shadows, lensing rings, and photon rings in the quantum corrected Schwarzschild black hole. The violation leads to a larger bright lensing ring in the observational appearance of the thin disk emission near the black hole compared with the classical Schwarzschild black hole. Our analysis may provide observational evidence for the quantum effect of general relativity. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 085103

Erratum: Covariant Spin Kinetic Theory I: Collisionless Limit, [Y.-C. Liu, K. Mameda, and X.-G. Huang, Chin. Phys. C 44, 094101 (2020)]

Yu-Chen Liu; Kazuya Mameda; Xu-Guang Huang

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 089001

Searching for dark matter particles using Compton scattering *

Shang Wang; Changbo Fu; De-Chang Dai; Hongwei Wang; Gongtao Fan; Xiguang Cao; Yugang Ma

<jats:title>Abstract</jats:title> <jats:p>The dark matter puzzle is one of the most important fundamental physics questions in the 21st century. There is no doubt that solving the puzzle will be a new milestone for human beings in achieving a deeper understanding of nature. Herein, we propose the use of the Shanghai laser electron gamma source (SLEGS) to search for dark matter candidate particles, including dark pseudoscalar particles, dark scalar particles, and dark photons. Our simulations indicate that, with some upgrading, electron facilities such as SLEGS could be competitive platforms in the search for light dark matter particles with a mass below tens of keV.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093001

Search for the doubly heavy baryons and decaying to and *

R. Aaij; C. Abellán Beteta; T. Ackernley; B. Adeva; M. Adinolfi; H. Afsharnia; C.A. Aidala; S. Aiola; Z. Ajaltouni; S. Akar; J. Albrecht; F. Alessio; M. Alexander; A. Alfonso Albero; Z. Aliouche; G. Alkhazov; P. Alvarez Cartelle; S. Amato; Y. Amhis; L. An; L. Anderlini; A. Andreianov; M. Andreotti; F. Archilli; A. Artamonov; M. Artuso; K. Arzymatov; E. Aslanides; M. Atzeni; B. Audurier; S. Bachmann; M. Bachmayer; J.J. Back; P. Baladron Rodriguez; V. Balagura; W. Baldini; J. Baptista Leite; R.J. Barlow; S. Barsuk; W. Barter; M. Bartolini; F. Baryshnikov; J.M. Basels; G. Bassi; B. Batsukh; A. Battig; A. Bay; M. Becker; F. Bedeschi; I. Bediaga; A. Beiter; V. Belavin; S. Belin; V. Bellee; K. Belous; I. Belov; I. Belyaev; G. Bencivenni; E. Ben-Haim; A. Berezhnoy; R. Bernet; D. Berninghoff; H.C. Bernstein; C. Bertella; A. Bertolin; C. Betancourt; F. Betti; Ia. Bezshyiko; S. Bhasin; J. Bhom; L. Bian; M.S. Bieker; S. Bifani; P. Billoir; M. Birch; F.C.R. Bishop; A. Bitadze; A. Bizzeti; M. Bjørn; M.P. Blago; T. Blake; F. Blanc; S. Blusk; D. Bobulska; J.A. Boelhauve; O. Boente Garcia; T. Boettcher; A. Boldyrev; A. Bondar; N. Bondar; S. Borghi; M. Borisyak; M. Borsato; J.T. Borsuk; S.A. Bouchiba; T.J.V. Bowcock; A. Boyer; C. Bozzi; M.J. Bradley; S. Braun; A. Brea Rodriguez; M. Brodski; J. Brodzicka; A. Brossa Gonzalo; D. Brundu; A. Buonaura; C. Burr; A. Bursche; A. Butkevich; J.S. Butter; J. Buytaert; W. Byczynski; S. Cadeddu; H. Cai; R. Calabrese; L. Calefice; L. Calero Diaz; S. Cali; R. Calladine; M. Calvi; M. Calvo Gomez; P. Camargo Magalhaes; A. Camboni; P. Campana; A.F. Campoverde Quezada; S. Capelli; L. Capriotti; A. Carbone; G. Carboni; R. Cardinale; A. Cardini; I. Carli; P. Carniti; L. Carus; K. Carvalho Akiba; A. Casais Vidal; G. Casse; M. Cattaneo; G. Cavallero; S. Celani; J. Cerasoli; A.J. Chadwick; M.G. Chapman; M. Charles; Ph. Charpentier; G. Chatzikonstantinidis; C.A. Chavez Barajas; M. Chefdeville; C. Chen; S. Chen; A. Chernov; V. Chobanova; S. Cholak; M. Chrzaszcz; A. Chubykin; V. Chulikov; P. Ciambrone; M.F. Cicala; X. Cid Vidal; G. Ciezarek; P.E.L. Clarke; M. Clemencic; H.V. Cliff; J. Closier; J.L. Cobbledick; V. Coco; J.A.B. Coelho; J. Cogan; E. Cogneras; L. Cojocariu; P. Collins; T. Colombo; L. Congedo; A. Contu; N. Cooke; G. Coombs; G. Corti; C.M. Costa Sobral; B. Couturier; D.C. Craik; J. Crkovská; M. Cruz Torres; R. Currie; C.L. Da Silva; E. Dall'Occo; J. Dalseno; C. D'Ambrosio; A. Danilina; P. d'Argent; A. Davis; O. De Aguiar Francisco; K. De Bruyn; S. De Capua; M. De Cian; J.M. De Miranda; L. De Paula; M. De Serio; D. De Simone; P. De Simone; J.A. de Vries; C.T. Dean; D. Decamp; L. Del Buono; B. Delaney; H.-P. Dembinski; A. Dendek; V. Denysenko; D. Derkach; O. Deschamps; F. Desse; F. Dettori; B. Dey; P. Di Nezza; S. Didenko; L. Dieste Maronas; H. Dijkstra; V. Dobishuk; A.M. Donohoe; F. Dordei; A.C. dos Reis; L. Douglas; A. Dovbnya; A.G. Downes; K. Dreimanis; M.W. Dudek; L. Dufour; V. Duk; P. Durante; J.M. Durham; D. Dutta; A. Dziurda; A. Dzyuba; S. Easo; U. Egede; V. Egorychev; S. Eidelman; S. Eisenhardt; S. Ek-In; L. Eklund; S. Ely; A. Ene; E. Epple; S. Escher; J. Eschle; S. Esen; T. Evans; A. Falabella; J. Fan; Y. Fan; B. Fang; S. Farry; D. Fazzini; M. Féo; A. Fernandez Prieto; J.M. Fernandez-tenllado Arribas; F. Ferrari; L. Ferreira Lopes; F. Ferreira Rodrigues; S. Ferreres Sole; M. Ferrillo; M. Ferro-Luzzi; S. Filippov; R.A. Fini; M. Fiorini; M. Firlej; K.M. Fischer; C. Fitzpatrick; T. Fiutowski; F. Fleuret; M. Fontana; F. Fontanelli; R. Forty; V. Franco Lima; M. Franco Sevilla; M. Frank; E. Franzoso; G. Frau; C. Frei; D.A. Friday; J. Fu; Q. Fuehring; W. Funk; E. Gabriel; T. Gaintseva; A. Gallas Torreira; D. Galli; S. Gambetta; Y. Gan; M. Gandelman; P. Gandini; Y. Gao; M. Garau; L.M. Garcia Martin; P. Garcia Moreno; J. García Pardiñas; B. Garcia Plana; F.A. Garcia Rosales; L. Garrido; C. Gaspar; R.E. Geertsema; D. Gerick; L.L. Gerken; E. Gersabeck; M. Gersabeck; T. Gershon; D. Gerstel; Ph. Ghez; V. Gibson; H.K. Giemza; M. Giovannetti; A. Gioventù; P. Gironella Gironell; L. Giubega; C. Giugliano; K. Gizdov; E.L. Gkougkousis; V.V. Gligorov; C. Göbel; E. Golobardes; D. Golubkov; A. Golutvin; A. Gomes; S. Gomez Fernandez; F. Goncalves Abrantes; M. Goncerz; G. Gong; P. Gorbounov; I.V. Gorelov; C. Gotti; E. Govorkova; J.P. Grabowski; T. Grammatico; L.A. Granado Cardoso; E. Graugés; E. Graverini; G. Graziani; A. Grecu; L.M. Greeven; P. Griffith; L. Grillo; S. Gromov; B.R. Gruberg Cazon; C. Gu; M. Guarise; P. A. Günther; E. Gushchin; A. Guth; Y. Guz; T. Gys; T. Hadavizadeh; G. Haefeli; C. Haen; J. Haimberger; T. Halewood-leagas; P.M. Hamilton; Q. Han; X. Han; T.H. Hancock; S. Hansmann-Menzemer; N. Harnew; T. Harrison; C. Hasse; M. Hatch; J. He; M. Hecker; K. Heijhoff; K. Heinicke; A.M. Hennequin; K. Hennessy; L. Henry; J. Heuel; A. Hicheur; D. Hill; M. Hilton; S.E. Hollitt; J. Hu; J. Hu; W. Hu; W. Huang; X. Huang; W. Hulsbergen; R.J. Hunter; M. Hushchyn; D. Hutchcroft; D. Hynds; P. Ibis; M. Idzik; D. Ilin; P. Ilten; A. Inglessi; A. Ishteev; K. Ivshin; R. Jacobsson; S. Jakobsen; E. Jans; B.K. Jashal; A. Jawahery; V. Jevtic; M. Jezabek; F. Jiang; M. John; D. Johnson; C.R. Jones; T.P. Jones; B. Jost; N. Jurik; S. Kandybei; Y. Kang; M. Karacson; M. Karpov; F. Keizer; M. Kenzie; T. Ketel; B. Khanji; A. Kharisova; S. Kholodenko; T. Kirn; V.S. Kirsebom; O. Kitouni; S. Klaver; K. Klimaszewski; S. Koliiev; A. Kondybayeva; A. Konoplyannikov; P. Kopciewicz; R. Kopecna; P. Koppenburg; M. Korolev; I. Kostiuk; O. Kot; S. Kotriakhova; P. Kravchenko; L. Kravchuk; R.D. Krawczyk; M. Kreps; F. Kress; S. Kretzschmar; P. Krokovny; W. Krupa; W. Krzemien; W. Kucewicz; M. Kucharczyk; V. Kudryavtsev; H.S. Kuindersma; G.J. Kunde; T. Kvaratskheliya; D. Lacarrere; G. Lafferty; A. Lai; A. Lampis; D. Lancierini; J.J. Lane; R. Lane; G. Lanfranchi; C. Langenbruch; J. Langer; O. Lantwin; T. Latham; F. Lazzari; R. Le Gac; S.H. Lee; R. Lefèvre; A. Leflat; S. Legotin; O. Leroy; T. Lesiak; B. Leverington; H. Li; L. Li; P. Li; S. Li; Y. Li; Y. Li; Z. Li; X. Liang; T. Lin; R. Lindner; V. Lisovskyi; R. Litvinov; G. Liu; H. Liu; S. Liu; X. Liu; A. Loi; J. Lomba Castro; I. Longstaff; J.H. Lopes; G.H. Lovell; Y. Lu; D. Lucchesi; S. Luchuk; M. Lucio Martinez; V. Lukashenko; Y. Luo; A. Lupato; E. Luppi; O. Lupton; A. Lusiani; X. Lyu; L. Ma; R. Ma; S. Maccolini; F. Machefert; F. Maciuc; V. Macko; P. Mackowiak; S. Maddrell-Mander; O. Madejczyk; L.R. Madhan Mohan; O. Maev; A. Maevskiy; D. Maisuzenko; M.W. Majewski; J.J. Malczewski; S. Malde; B. Malecki; A. Malinin; T. Maltsev; H. Malygina; G. Manca; G. Mancinelli; D. Manuzzi; D. Marangotto; J. Maratas; J.F. Marchand; U. Marconi; S. Mariani; C. Marin Benito; M. Marinangeli; P. Marino; J. Marks; A.M. Marshall; P.J. Marshall; G. Martellotti; L. Martinazzoli; M. Martinelli; D. Martinez Santos; F. Martinez Vidal; A. Massafferri; M. Materok; R. Matev; A. Mathad; Z. Mathe; V. Matiunin; C. Matteuzzi; K.R. Mattioli; A. Mauri; E. Maurice; J. Mauricio; M. Mazurek; M. McCann; L. Mcconnell; T.H. Mcgrath; A. McNab; R. McNulty; J.V. Mead; B. Meadows; C. Meaux; G. Meier; N. Meinert; D. Melnychuk; S. Meloni; M. Merk; A. Merli; L. Meyer Garcia; M. Mikhasenko; D.A. Milanes; E. Millard; M. Milovanovic; M.-N. Minard; A. Minotti; L. Minzoni; S.E. Mitchell; B. Mitreska; D.S. Mitzel; A. Mödden; R.A. Mohammed; R.D. Moise; T. Mombächer; I.A. Monroy; S. Monteil; M. Morandin; G. Morello; M.J. Morello; J. Moron; A.B. Morris; A.G. Morris; R. Mountain; H. Mu; F. Muheim; M. Mukherjee; M. Mulder; D. Müller; K. Müller; C.H. Murphy; D. Murray; P. Muzzetto; P. Naik; T. Nakada; R. Nandakumar; T. Nanut; I. Nasteva; M. Needham; I. Neri; N. Neri; S. Neubert; N. Neufeld; R. Newcombe; T.D. Nguyen; C. Nguyen-Mau; E.M. Niel; S. Nieswand; N. Nikitin; N.S. Nolte; C. Nunez; A. Oblakowska-Mucha; V. Obraztsov; D.P. O'Hanlon; R. Oldeman; M.E. Olivares; C.J.G. Onderwater; A. Ossowska; J.M. Otalora Goicochea; T. Ovsiannikova; P. Owen; A. Oyanguren; B. Pagare; P.R. Pais; T. Pajero; A. Palano; M. Palutan; Y. Pan; G. Panshin; A. Papanestis; M. Pappagallo; L.L. Pappalardo; C. Pappenheimer; W. Parker; C. Parkes; C.J. Parkinson; B. Passalacqua; G. Passaleva; A. Pastore; M. Patel; C. Patrignani; C.J. Pawley; A. Pearce; A. Pellegrino; M. Pepe Altarelli; S. Perazzini; D. Pereima; P. Perret; M. Petric; K. Petridis; A. Petrolini; A. Petrov; S. Petrucci; M. Petruzzo; T.T.H. Pham; A. Philippov; L. Pica; M. Piccini; B. Pietrzyk; G. Pietrzyk; M. Pili; D. Pinci; F. Pisani; P.K Resmi; V. Placinta; J. Plews; M. Plo Casasus; F. Polci; M. Poli Lener; M. Poliakova; A. Poluektov; N. Polukhina; I. Polyakov; E. Polycarpo; G.J. Pomery; S. Ponce; D. Popov; S. Popov; S. Poslavskii; K. Prasanth; L. Promberger; C. Prouve; V. Pugatch; H. Pullen; G. Punzi; W. Qian; J. Qin; R. Quagliani; B. Quintana; N.V. Raab; R.I. Rabadan Trejo; B. Rachwal; J.H. Rademacker; M. Rama; M. Ramos Pernas; M.S. Rangel; F. Ratnikov; G. Raven; M. Reboud; F. Redi; F. Reiss; C. Remon Alepuz; Z. Ren; V. Renaudin; R. Ribatti; S. Ricciardi; K. Rinnert; P. Robbe; A. Robert; G. Robertson; A.B. Rodrigues; E. Rodrigues; J.A. Rodriguez Lopez; A. Rollings; P. Roloff; V. Romanovskiy; M. Romero Lamas; A. Romero Vidal; J.D. Roth; M. Rotondo; M.S. Rudolph; T. Ruf; J. Ruiz Vidal; A. Ryzhikov; J. Ryzka; J.J. Saborido Silva; N. Sagidova; N. Sahoo; B. Saitta; D. Sanchez Gonzalo; C. Sanchez Gras; R. Santacesaria; C. Santamarina Rios; M. Santimaria; E. Santovetti; D. Saranin; G. Sarpis; M. Sarpis; A. Sarti; C. Satriano; A. Satta; M. Saur; D. Savrina; H. Sazak; L.G. Scantlebury Smead; S. Schael; M. Schellenberg; M. Schiller; H. Schindler; M. Schmelling; B. Schmidt; O. Schneider; A. Schopper; M. Schubiger; S. Schulte; M.H. Schune; R. Schwemmer; B. Sciascia; S. Sellam; A. Semennikov; M. Senghi Soares; A. Sergi; N. Serra; L. Sestini; A. Seuthe; P. Seyfert; Y. Shang; D.M. Shangase; M. Shapkin; I. Shchemerov; L. Shchutska; T. Shears; L. Shekhtman; Z. Shen; V. Shevchenko; E.B. Shields; E. Shmanin; J.D. Shupperd; B.G. Siddi; R. Silva Coutinho; G. Simi; S. Simone; N. Skidmore; T. Skwarnicki; M.W. Slater; I. Slazyk; J.C. Smallwood; J.G. Smeaton; A. Smetkina; E. Smith; M. Smith; A. Snoch; M. Soares; L. Soares Lavra; M.D. Sokoloff; F.J.P. Soler; A. Solovev; I. Solovyev; F.L. Souza De Almeida; B. Souza De Paula; B. Spaan; E. Spadaro Norella; P. Spradlin; F. Stagni; M. Stahl; S. Stahl; P. Stefko; O. Steinkamp; O. Stenyakin; H. Stevens; S. Stone; M.E. Stramaglia; M. Straticiuc; D. Strekalina; F. Suljik; J. Sun; L. Sun; Y. Sun; P. Svihra; P.N. Swallow; K. Swientek; A. Szabelski; T. Szumlak; M. Szymanski; S. Taneja; F. Teubert; E. Thomas; K.A. Thomson; V. Tisserand; S. T'Jampens; M. Tobin; L. Tomassetti; D. Torres Machado; D.Y. Tou; M.T. Tran; E. Trifonova; C. Trippl; G. Tuci; A. Tully; N. Tuning; A. Ukleja; D.J. Unverzagt; E. Ursov; A. Usachov; A. Ustyuzhanin; U. Uwer; A. Vagner; V. Vagnoni; A. Valassi; G. Valenti; N. Valls Canudas; M. van Beuzekom; M. Van Dijk; E. van Herwijnen; C.B. Van Hulse; M. van Veghel; R. Vazquez Gomez; P. Vazquez Regueiro; C. Vázquez Sierra; S. Vecchi; J.J. Velthuis; M. Veltri; A. Venkateswaran; M. Veronesi; M. Vesterinen; D. Vieira; M. Vieites Diaz; H. Viemann; X. Vilasis-Cardona; E. Vilella Figueras; P. Vincent; G. Vitali; D. Vom Bruch; A. Vorobyev; V. Vorobyev; N. Voropaev; R. Waldi; J. Walsh; C. Wang; J. Wang; J. Wang; J. Wang; J. Wang; M. Wang; R. Wang; Y. Wang; Z. Wang; Z. Wang; H.M. Wark; N.K. Watson; S.G. Weber; D. Websdale; C. Weisser; B.D.C. Westhenry; D.J. White; M. Whitehead; D. Wiedner; G. Wilkinson; M. Wilkinson; I. Williams; M. Williams; M.R.J. Williams; F.F. Wilson; W. Wislicki; M. Witek; L. Witola; G. Wormser; S.A. Wotton; H. Wu; K. Wyllie; Z. Xiang; D. Xiao; Y. Xie; A. Xu; J. Xu; L. Xu; M. Xu; Q. Xu; Z. Xu; Z. Xu; D. Yang; S. Yang; Y. Yang; Z. Yang; Z. Yang; Y. Yao; L.E. Yeomans; H. Yin; J. Yu; X. Yuan; O. Yushchenko; E. Zaffaroni; M. Zavertyaev; M. Zdybal; O. Zenaiev; M. Zeng; D. Zhang; L. Zhang; S. Zhang; Y. Zhang; Y. Zhang; A. Zhelezov; Y. Zheng; X. Zhou; Y. Zhou; X. Zhu; V. Zhukov; J.B. Zonneveld; Q. Zou; S. Zucchelli; D. Zuliani; G. Zunica; (LHCb Collaboration)

<jats:title>Abstract</jats:title> <jats:p>The first search for the doubly heavy <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{\varOmega}_{bc}^{0}}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M5.jpg" xlink:type="simple" /> </jats:inline-formula> baryon and a search for the <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{\varXi}_{bc}^{0}}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M6.jpg" xlink:type="simple" /> </jats:inline-formula> baryon are performed using <jats:inline-formula> <jats:tex-math><?CDATA $ pp $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M7.jpg" xlink:type="simple" /> </jats:inline-formula> collision data collected via the <jats:inline-formula> <jats:tex-math><?CDATA $ {\rm{LHCb}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M8.jpg" xlink:type="simple" /> </jats:inline-formula> experiment from 2016 to 2018 at a centre-of-mass energy of <jats:inline-formula> <jats:tex-math><?CDATA $ 13 \;{\rm{TeV}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, corresponding to an integrated luminosity of 5.2 <jats:inline-formula> <jats:tex-math><?CDATA $ \;{\rm{f}}{{\rm{b}}^{ - 1}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M10.jpg" xlink:type="simple" /> </jats:inline-formula>. The baryons are reconstructed via their decays to <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{\varLambda}^+_c}}} {{{{\pi}^-}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M11.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{\varXi}^+_c}}} {{{{\pi}^-}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M12.jpg" xlink:type="simple" /> </jats:inline-formula>. No significant excess is found for invariant masses between 6700 and 7300 <jats:inline-formula> <jats:tex-math><?CDATA $ \;{\rm{MeV}}/{c^2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, in a rapidity range from 2.0 to 4.5 and a transverse momentum range from 2 to 20 <jats:inline-formula> <jats:tex-math><?CDATA $ \;{\rm{MeV}}/{c} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M14.jpg" xlink:type="simple" /> </jats:inline-formula>. Upper limits are set on the ratio of the <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{\varOmega}_{bc}^{0}}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M15.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{\varXi}_{bc}^{0}}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M16.jpg" xlink:type="simple" /> </jats:inline-formula> production cross-section times the branching fraction to <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{\varLambda}^+_c}}}{{{{\pi}^-}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M17.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{\varXi}^+_c}}}{{{{\pi}^-}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M18.jpg" xlink:type="simple" /> </jats:inline-formula>) relative to that of the <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{\varLambda}^0_b}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M19.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{\varXi}_{b}^{0}}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M20.jpg" xlink:type="simple" /> </jats:inline-formula>) baryon, for different lifetime hypotheses, at 95% confidence level. The upper limits range from <jats:inline-formula> <jats:tex-math><?CDATA $ 0.5\times10^{-4} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M21.jpg" xlink:type="simple" /> </jats:inline-formula> to <jats:inline-formula> <jats:tex-math><?CDATA $ 2.5\times10^{-4} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M22.jpg" xlink:type="simple" /> </jats:inline-formula> for the <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{{{{{\varOmega}_{bc}^{0}}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M23.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{{{{{\varXi}_{bc}^{0}}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M24.jpg" xlink:type="simple" /> </jats:inline-formula>) decay, and from <jats:inline-formula> <jats:tex-math><?CDATA $ 1.4\times10^{-3} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M25.jpg" xlink:type="simple" /> </jats:inline-formula> to <jats:inline-formula> <jats:tex-math><?CDATA $ 6.9\times10^{-3} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M26.jpg" xlink:type="simple" /> </jats:inline-formula> for the <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{{{{{\varOmega}_{bc}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M27.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{{{{{\varXi}_{bc}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M28.jpg" xlink:type="simple" /> </jats:inline-formula>) decay, depending on the considered mass and lifetime of the <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{\varOmega}_{bc}^{0}}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M29.jpg" xlink:type="simple" /> </jats:inline-formula> ( <jats:inline-formula> <jats:tex-math><?CDATA $ {{{{\varXi}_{bc}^{0}}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093002_M30.jpg" xlink:type="simple" /> </jats:inline-formula>) baryon. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093002

Inclusive production of fully-charmed 1+− tetraquark at B factory *

Yingsheng Huang; Feng Feng; Yu Jia; Wen-Long Sang; De-Shan Yang; Jia-Yue Zhang

<jats:title>Abstract</jats:title> <jats:p>Inspired by the recent discovery of the <jats:inline-formula> <jats:tex-math><?CDATA $ X(6900) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> meson in the <jats:inline-formula> <jats:tex-math><?CDATA $ {\mathsf{ LHCb}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093101_M2.jpg" xlink:type="simple" /> </jats:inline-formula> experiment, we investigate the inclusive production rate of the <jats:inline-formula> <jats:tex-math><?CDATA $ C $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093101_M3.jpg" xlink:type="simple" /> </jats:inline-formula>-odd fully-charmed tetraquarks associated with light hadrons at the <jats:inline-formula> <jats:tex-math><?CDATA $ B $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093101_M4.jpg" xlink:type="simple" /> </jats:inline-formula> factory within the nonrelativistic QCD (NRQCD) factorization framework. The short-distance coefficient is computed at the lowest order of velocity and <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha_s $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093101_M5.jpg" xlink:type="simple" /> </jats:inline-formula>. Employing two different kinds of phenomenological models to approximately estimate the long-distance NRQCD matrix element, we predict the rate for the inclusive production of the <jats:inline-formula> <jats:tex-math><?CDATA $ 1^{+-} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093101_M6.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ T_{4c} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093101_M7.jpg" xlink:type="simple" /> </jats:inline-formula> state and discuss the observation prospect of the <jats:inline-formula> <jats:tex-math><?CDATA $ {{\mathsf{Belle}}\; {\mathsf{2}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093101_M8.jpg" xlink:type="simple" /> </jats:inline-formula> experiment. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093101

Exotic molecular states and tetraquark states with JP =0+, 1+, 2+ *

Qi-Nan Wang; Wei Chen; Hua-Xing Chen

<jats:title>Abstract</jats:title> <jats:p>We have calculated the mass spectra for the <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}_s^{(*)}D^{(*)}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> molecular states and <jats:inline-formula> <jats:tex-math><?CDATA $sc\bar q\bar c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> tetraquark states with <jats:inline-formula> <jats:tex-math><?CDATA $J^P=0^+, 1^+, 2^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M6.jpg" xlink:type="simple" /> </jats:inline-formula>. The masses of the axial-vector <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}_sD^{*}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}_s^{*}D$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M8.jpg" xlink:type="simple" /> </jats:inline-formula> molecular states and <jats:inline-formula> <jats:tex-math><?CDATA ${\bf 1}_{\boldsymbol{[sc]}}\boldsymbol \oplus {\bf 0}_{\boldsymbol{[\bar q \bar{c}]}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA ${\bf 0}_{\boldsymbol{[sc]}} \oplus {\bf 1}_{\boldsymbol{[\bar q \bar{c}]}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M10.jpg" xlink:type="simple" /> </jats:inline-formula> tetraquark states are predicted to be approximately 3.98 GeV, in good agreement with the mass of <jats:inline-formula> <jats:tex-math><?CDATA $Z_{cs}(3985)^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M11.jpg" xlink:type="simple" /> </jats:inline-formula> from BESIII. In both the molecular and diquark-antidiquark scenarios, our results suggest that there may exist two almost degenerate states, as the strange partners of <jats:inline-formula> <jats:tex-math><?CDATA $X(3872)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M12.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $Z_c(3900)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M13.jpg" xlink:type="simple" /> </jats:inline-formula>. We propose to carefully examine <jats:inline-formula> <jats:tex-math><?CDATA $Z_{cs}(3985)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M14.jpg" xlink:type="simple" /> </jats:inline-formula> in future experiments to verify this. One may also search for more hidden-charm four-quark states with strangeness in not only the open-charm <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}_s^{(*)}D^{(*)}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M15.jpg" xlink:type="simple" /> </jats:inline-formula> channels but also the hidden-charm channels <jats:inline-formula> <jats:tex-math><?CDATA $\eta_c K/K^\ast$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M16.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $J/\psi K/K^\ast$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_9_093102_M17.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 093102