Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Analysis of Zcs (3985) as the axialvector tetraquark state *

Zhi-Gang Wang

<jats:title>Abstract</jats:title> <jats:p>In this study, we choose the scalar and axialvector diquark operators in the color antitriplet as the fundamental building blocks to construct four-quark currents and investigate the diquark-antidiquark type axialvector tetraquark states <jats:inline-formula> <jats:tex-math><?CDATA $ c\bar{c}u\bar{s} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073107_M1.jpg" xlink:type="simple" /> </jats:inline-formula> in the framework of the QCD sum rules. The predicted tetraquark mass <jats:inline-formula> <jats:tex-math><?CDATA $ M_Z = 3.99\pm0.09\;\rm{GeV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073107_M2.jpg" xlink:type="simple" /> </jats:inline-formula> is in excellent agreement with the experimental value <jats:inline-formula> <jats:tex-math><?CDATA $ 3985.2^{+2.1}_{-2.0}\pm1.7\;\rm{MeV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073107_M3.jpg" xlink:type="simple" /> </jats:inline-formula> from the BESIII collaboration, which supports identifying <jats:inline-formula> <jats:tex-math><?CDATA $ Z_{cs}(3985) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073107_M4.jpg" xlink:type="simple" /> </jats:inline-formula> as the cousin of <jats:inline-formula> <jats:tex-math><?CDATA $ Z_c(3900) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073107_M5.jpg" xlink:type="simple" /> </jats:inline-formula> with quantum numbers <jats:inline-formula> <jats:tex-math><?CDATA $ J^{PC} = 1^{+-} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073107_M6.jpg" xlink:type="simple" /> </jats:inline-formula>. We take into account the light flavor <jats:inline-formula> <jats:tex-math><?CDATA $ SU(3) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073107_M7.jpg" xlink:type="simple" /> </jats:inline-formula> mass-breaking effect to estimate the mass spectrum of the diquark-antidiquark type hidden-charm tetraquark states with strangeness according to previous studies. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 073107

Di-Higgs production as a probe of flavor changing neutral Yukawa couplings

Shi-Ping He

<jats:title>Abstract</jats:title> <jats:p>Top partners are well motivated in many new physics models. Usually, vector like quarks, <jats:inline-formula> <jats:tex-math><?CDATA $T_{\rm L,R}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, are introduced to circumvent the quantum anomaly. Therefore, it is crucial to probe their interactions with standard model particles. However, flavor changing neutral couplings are always difficult to detect directly in current and future experiments. In this paper, we demonstrate how to constrain the flavor changing neutral Yukawa coupling <jats:inline-formula> <jats:tex-math><?CDATA $Tth$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M2.jpg" xlink:type="simple" /> </jats:inline-formula> indirectly, via the di-Higgs production. We consider the simplified model, including a pair of gauge singlet <jats:inline-formula> <jats:tex-math><?CDATA $T_{\rm L,R}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. Under the perturbative unitarity and experimental constraints, we select <jats:inline-formula> <jats:tex-math><?CDATA $m_T=400~{\rm{GeV}},s_{\rm L}=0.2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $m_T= $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M5.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ 800~{\rm{GeV}},s_{\rm L}=0.1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M5-1.jpg" xlink:type="simple" /> </jats:inline-formula> as benchmark points. After the analysis on the amplitude and evaluation of the numerical cross sections, we infer that the present constraints from di-Higgs production have already surpassed the unitarity bound because of the <jats:inline-formula> <jats:tex-math><?CDATA $(y_{\rm L,R}^{tT})^4$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M6.jpg" xlink:type="simple" /> </jats:inline-formula> behavior. For the case of <jats:inline-formula> <jats:tex-math><?CDATA $m_T=400~{\rm{GeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $s_{\rm L}=0.2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA ${\rm{Re}}y_{\rm L,R}^{tT}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M9.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA ${\rm{Im}}y_{\rm L,R}^{tT}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M10.jpg" xlink:type="simple" /> </jats:inline-formula> can be bounded optimally in the range <jats:inline-formula> <jats:tex-math><?CDATA $(-0.4, 0.4)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M11.jpg" xlink:type="simple" /> </jats:inline-formula> at the HL-LHC with <jats:inline-formula> <jats:tex-math><?CDATA $2\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M12.jpg" xlink:type="simple" /> </jats:inline-formula> CL. For the case of <jats:inline-formula> <jats:tex-math><?CDATA $m_T=800~{\rm{GeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M13.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $s_{\rm L}=0.1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M14.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA ${\rm{Re}}y_{\rm L,R}^{tT}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M15.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA ${\rm{Im}}y_{L,R}^{tT}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M16.jpg" xlink:type="simple" /> </jats:inline-formula> can be bounded optimally in the range <jats:inline-formula> <jats:tex-math><?CDATA $(-0.5, 0.5)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M17.jpg" xlink:type="simple" /> </jats:inline-formula> at the HL-LHC with <jats:inline-formula> <jats:tex-math><?CDATA $2\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M18.jpg" xlink:type="simple" /> </jats:inline-formula> CL. The anomalous triple Higgs coupling <jats:inline-formula> <jats:tex-math><?CDATA $\delta_{hhh}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M19.jpg" xlink:type="simple" /> </jats:inline-formula> can also affect the constraints on <jats:inline-formula> <jats:tex-math><?CDATA $y_{\rm L,R}^{tT}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M20.jpg" xlink:type="simple" /> </jats:inline-formula>. Finally, we determine that the top quark electric dipole moment can provide stronger <jats:inline-formula> <jats:tex-math><?CDATA $y_{\rm L,R}^{tT}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073108_M21.jpg" xlink:type="simple" /> </jats:inline-formula> bounds in the off-axis regions for some scenarios. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 073108

Chiral symmetry restoration and deconfinement in the contact interaction model of quarks with parallel electric and magnetic fields

Aftab Ahmad

<jats:title>Abstract</jats:title> <jats:p>We study the impact of steady, homogeneous, and external parallel electric and magnetic field strengths ( <jats:inline-formula> <jats:tex-math><?CDATA $ eE\parallel eB $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M1.jpg" xlink:type="simple" /> </jats:inline-formula>) on the chiral symmetry breaking-restoration and confinement-deconfinement phase transition. We also sketch the phase diagram of quantum chromodynamics (QCD) at a finite temperature <jats:italic>T</jats:italic> and in the presence of background fields. The unified formalism for this study is based on the Schwinger-Dyson equations, symmetry preserving vector-vector contact interaction model of quarks, and an optimal time regularization scheme. At <jats:inline-formula> <jats:tex-math><?CDATA $ T = 0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, in the purely magnetic case (i.e., <jats:inline-formula> <jats:tex-math><?CDATA $ eE\rightarrow 0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M4.jpg" xlink:type="simple" /> </jats:inline-formula>), we observe the well-known magnetic catalysis effect. However, in a pure electric field background ( <jats:inline-formula> <jats:tex-math><?CDATA $ eB\rightarrow 0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M5.jpg" xlink:type="simple" /> </jats:inline-formula>), the electric field tends to restore the chiral symmetry and deconfinement above the pseudo-critical electric field <jats:inline-formula> <jats:tex-math><?CDATA $ eE^{\chi, C}_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M6.jpg" xlink:type="simple" /> </jats:inline-formula>. In the presence of both <jats:inline-formula> <jats:tex-math><?CDATA $ eE $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ eB $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, we determine the magnetic catalysis effect in the particular region where <jats:inline-formula> <jats:tex-math><?CDATA $ eB $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M9.jpg" xlink:type="simple" /> </jats:inline-formula> dominates over <jats:inline-formula> <jats:tex-math><?CDATA $ eE $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, whereas we observe the chiral inhibition (or electric chiral rotation) effect when <jats:inline-formula> <jats:tex-math><?CDATA $ eE $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M11.jpg" xlink:type="simple" /> </jats:inline-formula> overshadows <jats:italic>eB</jats:italic>. At finite <jats:italic>T</jats:italic>, in the pure electric field case, the phenomenon of inverse electric catalysis appears to exist in the proposed model. Conversely, for a pure magnetic field background, we observe the magnetic catalysis effect in the mean-field approximation and inverse magnetic catalysis with <jats:inline-formula> <jats:tex-math><?CDATA $ eB $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M14.jpg" xlink:type="simple" /> </jats:inline-formula>-dependent coupling. The combined effects of <jats:inline-formula> <jats:tex-math><?CDATA $ eE $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M15.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ eB $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M16.jpg" xlink:type="simple" /> </jats:inline-formula> on the pseudo-critical <jats:inline-formula> <jats:tex-math><?CDATA $ T^{\chi, C}_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M17.jpg" xlink:type="simple" /> </jats:inline-formula> yields an inverse electromagnetic catalysis, with and without an <jats:inline-formula> <jats:tex-math><?CDATA $ eB $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073109_M18.jpg" xlink:type="simple" /> </jats:inline-formula>-dependent effective coupling of the model. The findings of this study agree well with the already predicted results obtained via lattice simulations and other reliable effective models of QCD. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 073109

Exclusive and dissociative J/ψ production with collinear-improved Balitsky-Kovchegov equation *

Shiyi Zhang; Shaohong Cai; Wenchang Xiang; Yanbing Cai; Daicui Zhou

<jats:title>Abstract</jats:title> <jats:p>We extend the hotspot model to include the virtuality dependence and use it to study the exclusive and dissociative <jats:inline-formula> <jats:tex-math><?CDATA ${J}/{\psi}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073110_M2.jpg" xlink:type="simple" /> </jats:inline-formula> production combined with the dipole amplitude in the target rapidity representation. We determined that virtuality takes effect on a number of hotspots, thus providing a better description of the <jats:inline-formula> <jats:tex-math><?CDATA ${J}/\mathrm{\psi}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073110_M3.jpg" xlink:type="simple" /> </jats:inline-formula> production data at HERA. The collinear improved Balitsky-Kovchegove equation in the target rapidity representation is numerically solved and used to fit the <jats:inline-formula> <jats:tex-math><?CDATA ${J}/\mathrm{\psi}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073110_M4.jpg" xlink:type="simple" /> </jats:inline-formula> experimental data with a series of hotspot sizes. We infer that virtuality significantly influences the number and size of hotspots. The expression <jats:inline-formula> <jats:tex-math><?CDATA $\chi^2/d.o.f=1.0183$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073110_M5.jpg" xlink:type="simple" /> </jats:inline-formula> resulting from the fit with the collinear improved dipole amplitude in the target rapidity representation is more reasonable than the corresponding <jats:inline-formula> <jats:tex-math><?CDATA $\chi^2/d.o.f=1.3995$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073110_M6.jpg" xlink:type="simple" /> </jats:inline-formula> originating from the leading order fit, which indicates that the collinear improved evolution equation in the target rapidity representation can provide a relatively good depiction of the exclusive and dissociative HERA data. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 073110

AdS/Deep-Learning made easy: simple examples *

Mugeon Song; Maverick S. H. Oh; Yongjun Ahn; Keun-Young Kima

<jats:title>Abstract</jats:title> <jats:p>Deep learning has been widely and actively used in various research areas. Recently, in gauge/gravity duality, a new deep learning technique called AdS/DL (Deep Learning) has been proposed. The goal of this paper is to explain the essence of AdS/DL in the simplest possible setups, without resorting to knowledge of gauge/gravity duality. This perspective will be useful for various physics problems: from the emergent spacetime as a neural network to classical mechanics problems. For prototypical examples, we choose simple classical mechanics problems. This method is slightly different from standard deep learning techniques in the sense that we not only have the right final answers but also obtain physical understanding of learning parameters.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 073111

Radiative decay of the Ξ(1620) in a hadronic molecule picture *

Yin Huang; Feng Yang; HongQiang Zhu

<jats:title>Abstract</jats:title> <jats:p>Last year, the <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi(1620) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M1.jpg" xlink:type="simple" /> </jats:inline-formula> state, which is cataloged in the Particle Data Group (PDG) with only one star, was reported again in the <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi^{-}\pi^{+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M2.jpg" xlink:type="simple" /> </jats:inline-formula> final state by the Belle Collaboration. Its properties, such as the spectroscopy and decay width, cannot be simply explained in the context of conventional constituent quark models. This inspires an active discussion on the structure of this resonance. In this paper, we study the radiative decays of the newly observed <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi(1620) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M3.jpg" xlink:type="simple" /> </jats:inline-formula> assuming that it is a meson-baryon molecular state of <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda\bar{K} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Sigma\bar{K} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M5.jpg" xlink:type="simple" /> </jats:inline-formula> with spin-parity <jats:inline-formula> <jats:tex-math><?CDATA $ J^P = 1/2^{-} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M6.jpg" xlink:type="simple" /> </jats:inline-formula> developed in our previous study. The partial decay widths of the <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda\bar{K}-\Sigma\bar{K} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M7.jpg" xlink:type="simple" /> </jats:inline-formula> molecular state into <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi\gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M8.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi\pi\gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M9.jpg" xlink:type="simple" /> </jats:inline-formula> final states through hadronic loops are evaluated using effective Lagrangians. The partial widths for <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi(1620)^0\to\gamma\Xi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M10.jpg" xlink:type="simple" /> </jats:inline-formula> is evaluated to be approximately <jats:inline-formula> <jats:tex-math><?CDATA $ 118.76-174.21 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M11.jpg" xlink:type="simple" /> </jats:inline-formula> keV, which may be accessible for the LHCb experiment. If <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi(1620) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M12.jpg" xlink:type="simple" /> </jats:inline-formula> is a <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda\bar{K}-\Sigma\bar{K} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M13.jpg" xlink:type="simple" /> </jats:inline-formula> molecule, the radiative transition strength <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi(1620)^0\to\gamma\bar{K}\Lambda $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M14.jpg" xlink:type="simple" /> </jats:inline-formula> is considerably small and the decay width is of the order of 0.01 eV. Future experimental measurements of these processes can be useful to test the molecule interpretations of the <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi(1620) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073112_M15.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 073112

Discriminating the HTM and MLRSM models in collider studies via doubly charged Higgs boson pair production and the subsequent leptonic decays *

Janusz Gluza; Magdalena Kordiaczyńska; Tripurari Srivastava

<jats:title>Abstract</jats:title> <jats:p>We present a case study for the doubly charged Higgs boson <jats:inline-formula> <jats:tex-math><?CDATA $H^{\pm\pm}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M3.jpg" xlink:type="simple" /> </jats:inline-formula> pair production in <jats:inline-formula> <jats:tex-math><?CDATA $e^+e^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:italic>pp</jats:italic> colliders with their subsequent decays to four charged leptons. We consider the Higgs Triplet Model ( <jats:inline-formula> <jats:tex-math><?CDATA $ {\texttt{HTM}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M5.jpg" xlink:type="simple" /> </jats:inline-formula>), which is not restricted by the custodial symmetry, and the Minimal Left-Right Symmetric Model ( <jats:inline-formula> <jats:tex-math><?CDATA $ {\texttt{MLRSM}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M6.jpg" xlink:type="simple" /> </jats:inline-formula>). These models include scalar triplets with different complexities of scalar potentials and, because of experimental restrictions, completely different scales of non-standard triplet vacuum expectation values. In both models, a doubly charged Higgs boson <jats:inline-formula> <jats:tex-math><?CDATA $H^{\pm\pm}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M7.jpg" xlink:type="simple" /> </jats:inline-formula> can acquire a mass of hundreds of gigaelectronvolts, which can be probed at the HL-LHC, future <jats:inline-formula> <jats:tex-math><?CDATA $e^+e^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, and hadron colliders. We take into account a comprehensive set of constraints on the parameters of both models coming from neutrino oscillations, LHC, <jats:inline-formula> <jats:tex-math><?CDATA $e^+e^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, and low-energy lepton flavor violating data and assume the same mass of <jats:inline-formula> <jats:tex-math><?CDATA $H^{\pm\pm}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M10.jpg" xlink:type="simple" /> </jats:inline-formula>. Our finding is that the <jats:inline-formula> <jats:tex-math><?CDATA $H^{\pm\pm}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M11.jpg" xlink:type="simple" /> </jats:inline-formula> pair production in lepton and hadron colliders is comparable in both models, though more pronounced in the <jats:inline-formula> <jats:tex-math><?CDATA $ {\texttt{MLRSM}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M12.jpg" xlink:type="simple" /> </jats:inline-formula>. We show that the decay branching ratios can be different within both models, leading to distinguishable four-lepton signals, and that the strongest are <jats:inline-formula> <jats:tex-math><?CDATA $4\mu$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M13.jpg" xlink:type="simple" /> </jats:inline-formula> events yielded by the <jats:inline-formula> <jats:tex-math><?CDATA $ {\texttt{MLRSM}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M14.jpg" xlink:type="simple" /> </jats:inline-formula>. Typically, we find that the <jats:inline-formula> <jats:tex-math><?CDATA $ {\texttt{MLRSM}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M15.jpg" xlink:type="simple" /> </jats:inline-formula> signals are one order of magnitude larger those in the <jats:inline-formula> <jats:tex-math><?CDATA $ {\texttt{HTM}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M16.jpg" xlink:type="simple" /> </jats:inline-formula>. For example, the <jats:inline-formula> <jats:tex-math><?CDATA $pp \to 4\mu$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M17.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ {\texttt{MLRSM}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M18.jpg" xlink:type="simple" /> </jats:inline-formula> signal for 1 TeV <jats:inline-formula> <jats:tex-math><?CDATA $H^{\pm \pm}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M19.jpg" xlink:type="simple" /> </jats:inline-formula> mass results in a clearly detectable significance of <jats:inline-formula> <jats:tex-math><?CDATA $S \simeq 11$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M20.jpg" xlink:type="simple" /> </jats:inline-formula> for the HL-LHC and <jats:inline-formula> <jats:tex-math><?CDATA $S \simeq 290$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073113_M21.jpg" xlink:type="simple" /> </jats:inline-formula> for the FCC-hh. Finally, we provide quantitative predictions for the dilepton invariant mass distributions and lepton separations, which help to identify non-standard signals. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 073113

Same-Sign Dilepton Signature in the Inert Doublet Model *

Fa-Xin Yang; Zhi-Long Han; Yi Jin

<jats:title>Abstract</jats:title> <jats:p>In this study, we perform a detailed analysis on the same-sign dilepton signature in the inert doublet model. Focusing on the low dark matter mass region, we randomly scan the corresponding parameter space. Viable samples allowed by various constraints are obtained, and among them are twenty benchmark points that are selected for further study on collider signature. At hadron colliders, the same-sign dilepton signature is produced via <jats:inline-formula> <jats:tex-math><?CDATA $pp\to W^{\pm *}W^{\pm *}jj \to H^\pm H^\pm jj$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073114_M1.jpg" xlink:type="simple" /> </jats:inline-formula> with the leptonic decay mode <jats:inline-formula> <jats:tex-math><?CDATA $ H^\pm \to HW^\pm (\to l^\pm \nu)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073114_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, where <jats:italic>H</jats:italic> represents the dark matter candidate. We investigate the testability of this signal at the high-luminosity LHC (HL-LHC) and the proposed 27 TeV high-energy LHC (HE-LHC). According to our simulation, the HL-LHC with <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{L}}=3\;{\rm{ab}}^{-1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073114_M3.jpg" xlink:type="simple" /> </jats:inline-formula> can barely probe this signal. Meanwhile, for the HE-LHC with <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{L}}=15\;{\rm{ab}}^{-1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073114_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, it is promising to obtain a <jats:inline-formula> <jats:tex-math><?CDATA $5\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073114_M5.jpg" xlink:type="simple" /> </jats:inline-formula> significance when <jats:inline-formula> <jats:tex-math><?CDATA $250\;{\rm{GeV}}\lesssim m_{H^\pm}-m_H\lesssim 300$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073114_M6.jpg" xlink:type="simple" /> </jats:inline-formula> GeV with dark matter mass <jats:inline-formula> <jats:tex-math><?CDATA $m_H\sim 60$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_073114_M7.jpg" xlink:type="simple" /> </jats:inline-formula> or 71 GeV. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 073114

Cross section measurements for (n,2n), (n,α), and (n,p) reactions on rhenium isotopes around 14 MeV neutrons and their theoretical calculations of excitation functions*

Fengqun Zhou; Yueli Song; Xinyi Chang; Yong Li; Shuqing Yuan; Pengfei Ji; Mingli Tian

<jats:title>Abstract</jats:title> <jats:p>Cross-section data of the <jats:sup>185</jats:sup>Re(<jats:italic>n</jats:italic>,2<jats:italic>n</jats:italic>)<jats:sup>184m</jats:sup>Re, <jats:sup>185</jats:sup>Re(<jats:italic>n</jats:italic>,2<jats:italic>n</jats:italic>)<jats:sup>184g</jats:sup>Re, <jats:sup>185</jats:sup>Re(<jats:italic>n</jats:italic>,<jats:italic>α</jats:italic>)<jats:sup>182m1+m2+g</jats:sup>Ta, <jats:sup>187</jats:sup>Re(<jats:italic>n</jats:italic>, 2<jats:italic>n</jats:italic>)<jats:sup>186g,(m)</jats:sup>Re, <jats:sup>187</jats:sup>Re(<jats:italic>n</jats:italic>,<jats:italic>α</jats:italic>)<jats:sup>184</jats:sup>Ta, and <jats:sup>187</jats:sup>Re(<jats:italic>n</jats:italic>,<jats:italic>p</jats:italic>)<jats:sup>187</jats:sup>W reactions were measured at four neutron energies, namely 13.5, 14.1, 14.4, and 14.8 MeV, by means of the activation technique, relative to the reference cross-section values of the <jats:sup>93</jats:sup>Nb(<jats:italic>n</jats:italic>,2<jats:italic>n</jats:italic>)<jats:sup>92m</jats:sup>Nb reaction. The neutrons were generated from the T(<jats:italic>d</jats:italic>,<jats:italic>n</jats:italic>)<jats:sup>4</jats:sup>He reaction at the K-400 Neutron Generator at China Academy of Engineering Physics. The induced γ activities were measured using a high-resolution γ-ray spectrometer equipped with a coaxial high-purity germanium detector. The excitation functions of the six above-mentioned nuclear reactions at neutron energies from the threshold to 20 MeV were calculated by adopting the nuclear theoretical model program system Talys-1.9 with the relevant parameters properly adjusted. The measured cross sections were analyzed and compared with previous experiments conducted by other researchers, and with the evaluated data of BROND-3.1, ENDF/B-VIII.0, JEFF-3.3, and the theoretical values based on Talys-1.9. The new measured results agree with those of previous experiments and the theoretical excitation curve at the corresponding energies. The theoretical excitation curves based on Talys-1.9 generally match most of experimental data well. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 074101

Hydrodynamic description of D meson production in high-energy heavy-ion collisions *

Chi Ding; Wei-Yao Ke; Long-Gang Pang; Xin-Nian Wang

<jats:title>Abstract</jats:title> <jats:p>The large values and constituent-quark-number scaling of the elliptic flow of low- <jats:inline-formula> <jats:tex-math><?CDATA $ p_T $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_074102_M1.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:italic>D</jats:italic> mesons imply that charm quarks, initially produced through hard processes, might be partially thermalized through strong interactions with quark-gluon plasma (QGP) in high-energy heavy-ion collisions. To quantify the degree of thermalization of low- <jats:inline-formula> <jats:tex-math><?CDATA $ p_T $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_074102_M2.jpg" xlink:type="simple" /> </jats:inline-formula> charm quarks, we compare the <jats:inline-formula> <jats:tex-math><?CDATA $ D^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_074102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> meson spectra and elliptic flow from a hydrodynamic model to experimental data as well as transport model simulations. We use an effective charm chemical potential at the freeze-out temperature to account for the initial charm quark production from hard processes and assume that they are thermalized in the local comoving frame of the medium before freeze-out. <jats:inline-formula> <jats:tex-math><?CDATA $ D^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_074102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> mesons are sampled statistically from the freeze-out hyper-surface of the expanding QGP as described by the event-by-event (3+1)D viscous hydrodynamic model CLVisc. Both the hydrodynamic and transport models can describe the elliptic flow of <jats:inline-formula> <jats:tex-math><?CDATA $ D^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_074102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> mesons at <jats:inline-formula> <jats:tex-math><?CDATA $ p_T \lt 3 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_074102_M6.jpg" xlink:type="simple" /> </jats:inline-formula> GeV/<jats:italic>c</jats:italic> as measured in Au+Au collisions at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s_{NN}} = 200 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_074102_M7.jpg" xlink:type="simple" /> </jats:inline-formula> GeV. Though the experimental data on <jats:inline-formula> <jats:tex-math><?CDATA $ D^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_074102_M8.jpg" xlink:type="simple" /> </jats:inline-formula> spectra are consistent with the hydrodynamic result at small <jats:inline-formula> <jats:tex-math><?CDATA $ p_T\sim 1 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_074102_M9.jpg" xlink:type="simple" /> </jats:inline-formula> GeV/<jats:italic>c</jats:italic>, they deviate from the hydrodynamic model at high transverse momentum, <jats:inline-formula> <jats:tex-math><?CDATA $ p_T \gt 2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_074102_M10.jpg" xlink:type="simple" /> </jats:inline-formula> GeV/<jats:italic>c</jats:italic>. The diffusion and parton energy loss mechanisms in the transport model can describe the measured spectra reasonably well within the theoretical uncertainty. Our comparative study indicates that charm quarks only approach local thermal equilibrium at small <jats:inline-formula> <jats:tex-math><?CDATA $ p_T $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_074102_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, even though they acquire sizable elliptic flow comparable to light-quark hadrons at both small and intermediate <jats:inline-formula> <jats:tex-math><?CDATA $ p_T $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_7_074102_M12.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 074102