Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Validity of thermodynamic laws and weak cosmic censorship for AdS black holes and black holes in a cavity *
Peng Wang; Houwen Wu; Shuxuan Ying
<jats:title>Abstract</jats:title> <jats:p>By throwing a test charged particle into a Reissner-Nordstrom (RN) black hole, we test the validity of the first and second laws of thermodynamics and the weak cosmic censorship conjecture (WCCC) with two types of boundary conditions: the asymptotically anti-de Sitter (AdS) space and a Dirichlet cavity wall placed in an asymptotically flat space. For the RN-AdS black hole, the second law of thermodynamics is satisfied, and the WCCC is violated for both extremal and near-extremal black holes. For the RN black hole in a cavity, the entropy can either increase or decrease depending on the change in the charge, and the WCCC is satisfied/violated for the extremal/near-extremal black hole. Our results indicate that there may be a connection between the black hole thermodynamics and the boundary condition imposed on the black hole.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 055105
Initial years’ neutron-induced cross-section measurements at the CSNS Back-n white neutron source *
Jingyu Tang; Rong Liu; Guohui Zhang; Xichao Ruan; Xiaoguang Wu; Qi An; Jiangbo Bai; Jie Bao; Yu Bao; Ping Cao; Haolei Chen; Qiping Chen; Yonghao Chen; Zhen Chen; Zengqi Cui; Ruirui Fan; Changqing Feng; Lin Gan; Keqing Gao; Xiaolong Gao; Minhao Gu; Changcai Han; Zijie Han; Guozhu He; Yongcheng He; Yang Hong; Yiwei Hu; Hanxiong Huang; Xiru Huang; Haoyu Jiang; Wei Jiang; Zhijie Jiang; Hantao Jing; Ling Kang; Bo Li; Chao Li; Jiawen Li; Qiang Li; Xiao Li; Yang Li; Jie Liu; Minliang Liu; Shubin Liu; Xingyan Liu; Ze Long; Guangyuan Luan; Changjun Ning; Mengchen Niu; Binbin Qi; Jie Ren; Zhizhou Ren; Zhaohui Song; Kang Sun; Zhijia Sun; Zhixin Tan; Xinyi Tang; Binbin Tian; Lijiao Wang; Pengcheng Wang; Zhaohui Wang; Jie Wen; Zhongwei Wen; Xuan Wu; Likun Xie; Xiaoyun Yang; Yiwei Yang; Han Yi; Li Yu; Tao Yu; Yongji Yu; Linhao Zhang; Qiwei Zhang; Xianpeng Zhang; Yuliang Zhang; Zhiyong Zhang; Luping Zhou; Zhihao Zhou; Kejun Zhu; (The Back-n Collaboration)
<jats:title>Abstract</jats:title> <jats:p>The Back-n white neutron source (known as Back-n) is based on back-streaming neutrons from the spallation target at the China Spallation Neutron Source (CSNS). With its excellent beam properties, e.g., a neutron flux of approximately 1.8×10<jats:sup>7</jats:sup> n/cm<jats:sup>2</jats:sup>/s at 55 m from the spallation target, energy range spanning from 0.5 eV to 200 MeV, and time-of-flight resolution of a few per thousand, along with the equipped physical spectrometers, Back-n is considered to be among the best facilities in the world for carrying out nuclear data measurements. Since its completion and commencement of operation in May 2018, five types of cross-section measurements concerning neutron capture cross-sections, fission cross-sections, total cross-sections, light charged particle emissions, in-beam gamma spectra, and more than forty nuclides have been measured. This article presents an overview of the experimental setup and result analysis on the neutron-induced cross-section measurements and gamma spectroscopy at Back-n in the initial years. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 062001
Interpretation of the Galactic gamma-ray excess with the dark matter indicated by 8Be and 4He anomalous transitions *
Lian-Bao Jia; Tong Li
<jats:title>Abstract</jats:title> <jats:p>The long-standing Galactic center gamma-ray excess could be explained by GeV dark matter (DM) annihilation, but the DM interpretation seems to conflict with recent joint limits from different astronomical scale observations such as dwarf spheroidal galaxies, the Milky Way halo, and galaxy groups/clusters. Motivated by <jats:sup>8</jats:sup>Be and <jats:sup>4</jats:sup>He anomalous transitions with possible new interactions mediated by a vector boson <jats:italic>X</jats:italic>, we consider a small fraction of DM mainly annihilating into a pair of on-shell vector bosons <jats:inline-formula> <jats:tex-math><?CDATA $X X$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> followed by <jats:inline-formula> <jats:tex-math><?CDATA $X \to e^+ e^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063101_M2.jpg" xlink:type="simple" /> </jats:inline-formula> in this paper. The Galactic center gamma-ray excess is explained by this DM cascade annihilation. The gamma rays are mainly from inverse Compton scattering emission, and the DM cascade annihilation could be compatible with joint astrophysical limits and meanwhile be allowed by AMS-02 positron observation. The direct detection of this model is also discussed. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063101
Molecular picture for X 0(2900) and X 1(2900) *
Jun He; Dian-Yong Chen
<jats:title>Abstract</jats:title> <jats:p>Inspired by the newly observed <jats:inline-formula> <jats:tex-math><?CDATA $X_{0}(2900)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $X_1(2900)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> states at LHCb, the <jats:inline-formula> <jats:tex-math><?CDATA $K^*\bar{D}^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $K\bar{D}_1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M6.jpg" xlink:type="simple" /> </jats:inline-formula> interactions are studied in the quasipotential Bethe-Salpeter equation approach combined with the one-boson-exchange model. The bound and virtual states from the interactions are searched for as poles in the complex energy plane of scattering amplitude. A bound state with <jats:inline-formula> <jats:tex-math><?CDATA $I(J^P)=0(0^+)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and a virtual state with <jats:inline-formula> <jats:tex-math><?CDATA $0(1^-)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M8.jpg" xlink:type="simple" /> </jats:inline-formula> are produced from the <jats:inline-formula> <jats:tex-math><?CDATA $K^*\bar{D}^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M9.jpg" xlink:type="simple" /> </jats:inline-formula> interaction and <jats:inline-formula> <jats:tex-math><?CDATA $K\bar{D}_1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M10.jpg" xlink:type="simple" /> </jats:inline-formula> interaction, and can be related to the <jats:inline-formula> <jats:tex-math><?CDATA $X_{0}(2900)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M11.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $X_1(2900)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M12.jpg" xlink:type="simple" /> </jats:inline-formula> observed at LHCb, respectively. A bound state with <jats:inline-formula> <jats:tex-math><?CDATA $I(J^P)=0(1^+)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M13.jpg" xlink:type="simple" /> </jats:inline-formula> and a virtual state with <jats:inline-formula> <jats:tex-math><?CDATA $I(J^P)=0(2^+)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M14.jpg" xlink:type="simple" /> </jats:inline-formula> are also predicted from the <jats:inline-formula> <jats:tex-math><?CDATA $K^*\bar{D}^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M15.jpg" xlink:type="simple" /> </jats:inline-formula> interaction, with the same <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M16.jpg" xlink:type="simple" /> </jats:inline-formula> value, to reproduce the <jats:inline-formula> <jats:tex-math><?CDATA $X_{0,1}(2900)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063102_M17.jpg" xlink:type="simple" /> </jats:inline-formula>, which can be searched for in future experiments. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063102
A novel method to test particle ordering and final state alignment in helicity formalism *
Mengzhen Wang; Yi Jiang; Yinrui Liu; Wenbin Qian; Xiao-Rui Lyu; Liming Zhang
<jats:title>Abstract</jats:title> <jats:p>In this study, the non-trival effect of the selection of reference particles for decay angle definitions is demonstrated when constructing the partial-wave amplitude of multi-body decays using helicity formalism. This issue is often ignored in the standard use case of helicity formalism. A new technique is proposed to test the selection of the particle ordering, and it can also be used as a generalized method to calculate the rotation operators that are used for the final-state alignment between different decay chains. Moreover, numerical validations are performed to support the arguments and to verify the effectiveness of the proposed technique.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063103
Hadronic coupling constants of the lowest hidden-charm pentaquark state, using QCD sum rules with rigorous quark-hadron duality *
Zhigang Wang; Huijuan Wang; Qi Xin
<jats:title>Abstract</jats:title> <jats:p>In this article, we illustrate how to calculate the hadronic coupling constants of the pentaquark states with QCD sum rules based on rigorous quark-hadron quality. We then study the hadronic coupling constants of the lowest diquark-diquark-antiquark type hidden-charm pentaquark state with spin-parity <jats:inline-formula> <jats:tex-math><?CDATA $ J^P = {\dfrac{1}{2}}^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M1.jpg" xlink:type="simple" /> </jats:inline-formula> in detail, and calculate the partial decay widths. The total width <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma(P_c) = 14.32\pm3.31\;\rm{MeV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M2.jpg" xlink:type="simple" /> </jats:inline-formula> is compatible with the experimental value <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma_{P_c(4312)} = 9.8\pm2.7^{+ 3.7}_{- 4.5} \; \rm{ MeV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> from the LHCb collaboration, and favors assigning the <jats:inline-formula> <jats:tex-math><?CDATA $ P_c(4312) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> to be the <jats:inline-formula> <jats:tex-math><?CDATA $ [ud][uc]\bar{c} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> pentaquark state with <jats:inline-formula> <jats:tex-math><?CDATA $ J^P = {\dfrac{1}{2}}^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M6.jpg" xlink:type="simple" /> </jats:inline-formula>. The hadronic coupling constants have the relation <jats:inline-formula> <jats:tex-math><?CDATA $ |G_{PD^-\Sigma_c^{++}}| = \sqrt{2}|G_{P\bar{D}^0\Sigma_c^+}|\gg $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M7.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ |G_{P\bar{D}^0\Lambda_c^+}| $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M7-1.jpg" xlink:type="simple" /> </jats:inline-formula>, and favor the hadronic dressing mechanism. The <jats:inline-formula> <jats:tex-math><?CDATA $ P_c(4312) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M8.jpg" xlink:type="simple" /> </jats:inline-formula> may have a diquark-diquark-antiquark type pentaquark core with the typical size of the <jats:inline-formula> <jats:tex-math><?CDATA $ qqq $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M9.jpg" xlink:type="simple" /> </jats:inline-formula>-type baryon states. The strong couplings to the meson-baryon pairs <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{D}\Sigma_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M10.jpg" xlink:type="simple" /> </jats:inline-formula> lead to some pentaquark molecule components, and the <jats:inline-formula> <jats:tex-math><?CDATA $ P_c(4312) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M11.jpg" xlink:type="simple" /> </jats:inline-formula> may spend a rather large time as the <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{D}\Sigma_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063104_M12.jpg" xlink:type="simple" /> </jats:inline-formula> molecular state. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063104
Importance of heavy quark longitudinal structure function measurements at future circular collider energies
G. R. Boroun
<jats:title>Abstract</jats:title> <jats:p>In this article, we consider the ratio of structure functions for heavy quark pair production at low values of <jats:inline-formula> <jats:tex-math><?CDATA $ x $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063105_M1.jpg" xlink:type="simple" /> </jats:inline-formula>. The importance of this ratio for charm and beauty pair production is examined according to the Hadron Electron Ring Accelerator (HERA) data. The behavior of these ratios is considered due to the hard pomeron behavior of the gluon distribution function. The results are in good agreement with the HERA data. Expanding this data to the range of new energies underscores the importance of these measurements for heavy quarks. The ratio of charm and beauty structure functions at the proposed Large Hadron electron Collider (LHeC) is considered as a function of invariant center-of-mass energy. For top pair production this ratio is extracted with known kinematics of the LHeC and Future Circular Collider electron-hadron (FCC-eh) colliders. Comparison of the results obtained for the ratio of top structure functions in LHeC and FCC-eh are proportional to the specified inelasticity <jats:inline-formula> <jats:tex-math><?CDATA $ y $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063105_M2.jpg" xlink:type="simple" /> </jats:inline-formula> range. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063105
NNLO QCD predictions of electron charge asymmetry for inclusive pp → W + X production in forward region at 13 and 14 TeV
Kadir Ocalan
<jats:title>Abstract</jats:title> <jats:p>This paper presents perturbative QCD predictions of the electron charge asymmetry for inclusive <jats:inline-formula> <jats:tex-math><?CDATA $ W^{\pm}+X \rightarrow e^{\pm} \nu +X $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063106_M1.jpg" xlink:type="simple" /> </jats:inline-formula> production in proton-proton (<jats:italic>pp</jats:italic>) collisions. Perturbative QCD calculations are performed at next-to-next-to-leading order (NNLO) accuracy using different parton distribution function (PDF) models at 8, 13, and 14 TeV center-of-mass energies of CERN LHC <jats:italic>pp</jats:italic> collisions. NNLO calculations are performed for electrons with transverse momenta above 20 GeV in the forward electron pseudorapidity region <jats:inline-formula> <jats:tex-math><?CDATA $ 2.0 \leqslant \eta_{e} \leqslant 4.25 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063106_M2.jpg" xlink:type="simple" /> </jats:inline-formula>. NNLO predictions are first compared at 8 TeV with the measurements of the LHCb experiment at the LHC for the <jats:inline-formula> <jats:tex-math><?CDATA $ W^{+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063106_M3.jpg" xlink:type="simple" /> </jats:inline-formula>/ <jats:inline-formula> <jats:tex-math><?CDATA $ W^{-} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063106_M4.jpg" xlink:type="simple" /> </jats:inline-formula> cross section ratio and charge asymmetry distributions. The 8 TeV predictions using NNPDF3.1, CT14, and MMHT2014 PDF sets are reported to be in good agreement with the LHCb data for the entire <jats:inline-formula> <jats:tex-math><?CDATA $ \eta_{e} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063106_M5.jpg" xlink:type="simple" /> </jats:inline-formula> region, justifying the extension of the calculations to 13 and 14 TeV energies. The charge asymmetry predictions at NNLO accuracy are reported in the forward <jats:inline-formula> <jats:tex-math><?CDATA $ \eta_{e} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063106_M6.jpg" xlink:type="simple" /> </jats:inline-formula> bins at 13 and 14 TeV and compared among NNPDF3.1, CT14, and MMHT2014 PDF sets. Overall, the predicted <jats:inline-formula> <jats:tex-math><?CDATA $ W^{\pm} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063106_M7.jpg" xlink:type="simple" /> </jats:inline-formula> differential cross-section and charge asymmetry distributions based on different PDF sets are found to be consistent with each other for the entire <jats:inline-formula> <jats:tex-math><?CDATA $ \eta_{e} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063106_M8.jpg" xlink:type="simple" /> </jats:inline-formula> region. The charge asymmetry distributions are shown to be more sensitive to discriminate among different PDF models in terms of the 14 TeV predictions. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063106
Investigation on effects of new physics in transitions *
Xue Leng; Xiao-Long Mu; Zhi-Tian Zou; Ying Li
<jats:title>Abstract</jats:title> <jats:p>Anomalies in decays induced by <jats:inline-formula> <jats:tex-math><?CDATA $b\to c \ell^- \bar\nu_\ell$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063107_M2.jpg" xlink:type="simple" /> </jats:inline-formula>( <jats:inline-formula> <jats:tex-math><?CDATA $\ell = e, \mu, \tau$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063107_M3.jpg" xlink:type="simple" /> </jats:inline-formula>) transitions may imply lepton flavor universality violations, which raises questions on such phenomena in the <jats:italic>D</jats:italic> decays induced by <jats:inline-formula> <jats:tex-math><?CDATA $ c\to (s,d)\ell^+\nu_\ell $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063107_M4.jpg" xlink:type="simple" /> </jats:inline-formula> transitions. Current measurements of the pure leptonic and semi-leptonic <jats:italic>D</jats:italic> decays agree with the standard model (SM) predictions, and such agreements can be used to constrain the new physics (NP) contributions. In this work, we extend SM by assuming general effective Hamiltonians describing the <jats:inline-formula> <jats:tex-math><?CDATA $ c\to (s,d)\ell^+\nu_\ell $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063107_M5.jpg" xlink:type="simple" /> </jats:inline-formula> transitions including the full set of the four-fermion operators. With the latest experimental data, we perform a least <jats:inline-formula> <jats:tex-math><?CDATA $ \chi^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063107_M6.jpg" xlink:type="simple" /> </jats:inline-formula> fit of the Wilson coefficient corresponding to each operator. The results indicate that the Wilson coefficients of tensor and scalar operators in the muon sector are in the order of <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal O}(10^{-2}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063107_M7.jpg" xlink:type="simple" /> </jats:inline-formula> while others are in the order of <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal O}(10^{-3}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063107_M8.jpg" xlink:type="simple" /> </jats:inline-formula>. The lepton flavor universality could be violated by interactions with the scalar operators. We also determine that the pure leptonic decays are significantly sensitive to scalar operators. The effects of NP on the semi-leptonic decays with electron final state are negligible; however, for the decays with the muon final state, the effects of scalar and tensor operators will appear in the forward-backward asymmetries and the muon helicity asymmetries of <jats:inline-formula> <jats:tex-math><?CDATA $ D \to P\mu^+ \nu_\mu $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063107_M9.jpg" xlink:type="simple" /> </jats:inline-formula> decays. The future measurements of these decays in the BESIII and Belle II experiments will facilitate the evaluation of NP effects. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063107
Spectroscopic investigation of light strange S = −1 Λ and Σ and S = −2 Ξ baryons
Chandni Menapara; Ajay Kumar Rai
<jats:title>Abstract</jats:title> <jats:p>The present study is dedicated to light-strange <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063108_M1.jpg" xlink:type="simple" /> </jats:inline-formula> with strangeness <jats:italic>S</jats:italic> = −1 and isospin <jats:italic>I</jats:italic> = 0, <jats:inline-formula> <jats:tex-math><?CDATA $\Sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063108_M2.jpg" xlink:type="simple" /> </jats:inline-formula> with <jats:italic>S</jats:italic> = −1 and <jats:italic>I</jats:italic> = 1, and <jats:inline-formula> <jats:tex-math><?CDATA $\Xi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063108_M3.jpg" xlink:type="simple" /> </jats:inline-formula> baryon with <jats:italic>S</jats:italic> = −2 and <jats:inline-formula> <jats:tex-math><?CDATA $I=\dfrac{1}{2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063108_M4.jpg" xlink:type="simple" /> </jats:inline-formula>. In this study, the hypercentral constituent quark model with linear confining potential has been employed along with a first order correction term to obtain the resonance masses up to approximately 4 GeV. The calculated states include 1<jats:italic>S</jats:italic>-5<jats:italic>S</jats:italic>, 1<jats:italic>P</jats:italic>-4<jats:italic>P</jats:italic>, 1<jats:italic>D</jats:italic>-3<jats:italic>D</jats:italic>, 1<jats:italic>F</jats:italic>-2<jats:italic>F</jats:italic>, and 1<jats:italic>G</jats:italic> (in a few cases) along with all possible spin-parity assignments. Regge trajectories have been explored for the linearity of the calculated masses for <jats:inline-formula> <jats:tex-math><?CDATA $(n,M^{2})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063108_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $(J,M^{2})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063108_M6.jpg" xlink:type="simple" /> </jats:inline-formula>. Magnetic moments have been intensively studied for ground state spin <jats:inline-formula> <jats:tex-math><?CDATA $\dfrac{1}{2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063108_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\dfrac{3}{2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063108_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, in addition to the configuration mixing of the first negative parity state for <jats:inline-formula> <jats:tex-math><?CDATA $\Xi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_6_063108_M9.jpg" xlink:type="simple" /> </jats:inline-formula>. Lastly, the transition magnetic moments and radiative decay widths have been presented. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063108