Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Categorization of two-loop Feynman diagrams in the 𝒪α2 correction to *
Zhao Li; Yefan Wang; Quan-feng Wu
<jats:title>Abstract</jats:title> <jats:p>The <jats:inline-formula> <jats:tex-math><?CDATA $ e^+e^- \rightarrow ZH $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> process is the dominant process for the Higgs boson production at the future Higgs factory. In order to match the analysis on the Higgs properties with highly precise experiment data, it will be crucial to include the theoretical prediction to the full next-to-next-to-leading order electroweak effect in the production rate <jats:inline-formula> <jats:tex-math><?CDATA $ \sigma(e^+e^-\rightarrow ZH) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053102_M4.jpg" xlink:type="simple" /> </jats:inline-formula>. In this inspiring work, we categorize the two-loop Feynman diagrams of the <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal O}(\alpha^2) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> correction to <jats:inline-formula> <jats:tex-math><?CDATA $ e^+e^- \rightarrow ZH $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053102_M6.jpg" xlink:type="simple" /> </jats:inline-formula> into 6 categories according to relevant topological structures. Although 25377 diagrams contribute to the <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal O}(\alpha^2) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053102_M7.jpg" xlink:type="simple" /> </jats:inline-formula> correction in total, the number of the most challenging diagrams with seven denominators is 2250, which contain only 312 non-planar diagrams with 155 independent types. This categorization could be a valuable reference for the complete calculation in future. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 053102
Properties of the P c(4312) pentaquark and its bottom partner
K. Azizi; Y. Sarac; H. Sundu
<jats:title>Abstract</jats:title> <jats:p>We present an analysis of the newly observed pentaquark <jats:inline-formula> <jats:tex-math><?CDATA $P_c(4312)^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> to shed light on its quantum numbers. To do that, the QCD sum rules approach is used. The measured mass of this particle is close to the <jats:inline-formula> <jats:tex-math><?CDATA $\Sigma_c^{++}\bar{D}^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> threshold and has a small width, which supports the possibility of its being a molecular state. We consider an interpolating current in a molecular form and analyze both the positive and negative parity states with spin- <jats:inline-formula> <jats:tex-math><?CDATA ${1}/{2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053103_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. We also consider the bottom counterpart of the state with similar molecular form. Our mass result for the charm pentaquark state supports that the quantum numbers of the observed state are consistent with <jats:inline-formula> <jats:tex-math><?CDATA $J^P={1}/{2}^{-}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053103_M4.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 053103
Phenomenological studies on decay *
Jing-Juan Qi; Zhen-Yang Wang; Zhu-Feng Zhang; Xin-Heng Guo
<jats:title>Abstract</jats:title> <jats:p>Within the quasi-two-body decay model, we study the localized CP violation and branching fraction of the four-body decay <jats:inline-formula> <jats:tex-math><?CDATA $\bar{B}^0\rightarrow [K^-\pi^+]_{S/V}[\pi^+\pi^-]_{V/S} \rightarrow K^-\pi^+\pi^-\pi^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> when the <jats:inline-formula> <jats:tex-math><?CDATA $K^-\pi^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\pi^-\pi^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> pair invariant masses are <jats:inline-formula> <jats:tex-math><?CDATA $0.35 \lt m_{K^-\pi^+} \lt 2.04 \; \mathrm{GeV}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $0 \lt m_{\pi^-\pi^+} \lt 1.06\; \mathrm{GeV}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, with the pairs being dominated by the <jats:inline-formula> <jats:tex-math><?CDATA $\bar{K}^*_0(700)^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{K}^*(892)^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{K}^*(1410)^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{K}^*_0(1430)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M11.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\bar{K}^*(1680)^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $f_0(500)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\rho^0(770)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M14.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\omega(782)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M15.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $f_0(980)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M16.jpg" xlink:type="simple" /> </jats:inline-formula> resonances, respectively. When dealing with the dynamical functions of these resonances, <jats:inline-formula> <jats:tex-math><?CDATA $f_0(500)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M17.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\rho^0(770)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M18.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $f_0(980)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M19.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\bar{K}^*_0(1430)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M20.jpg" xlink:type="simple" /> </jats:inline-formula> are modeled with the Bugg model, Gounaris-Sakurai function, Flatté formalism and LASS lineshape, respectively, while the others are described by the relativistic Breit-Wigner function. Adopting the end point divergence parameters <jats:inline-formula> <jats:tex-math><?CDATA $\rho_A\in[0,0.5]$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M21.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\phi_A\in[0,2\pi]$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M22.jpg" xlink:type="simple" /> </jats:inline-formula>, our predicted results are <jats:inline-formula> <jats:tex-math><?CDATA $\mathcal{A_{CP}}(\bar{B}^0\rightarrow K^-\pi^+\pi^+\pi^-)\in[-0.365,0.447]$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M23.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\mathcal{B}(\bar{B}^0\rightarrow K^-\pi^+\pi^+\pi^-)\in $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M24.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ [6.11,185.32]\times10^{-8}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M24-1.jpg" xlink:type="simple" /> </jats:inline-formula>, based on the hypothetical <jats:inline-formula> <jats:tex-math><?CDATA $q\bar{q}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M25.jpg" xlink:type="simple" /> </jats:inline-formula> structures for the scalar mesons in the QCD factorization approach. Meanwhile, we calculate the CP violating asymmetries and branching fractions of the two-body decays <jats:inline-formula> <jats:tex-math><?CDATA $\bar{B}^0\rightarrow SV(VS)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M27.jpg" xlink:type="simple" /> </jats:inline-formula> and all the individual four-body decays <jats:inline-formula> <jats:tex-math><?CDATA $\bar{B}^0\rightarrow SV(VS) \rightarrow K^-\pi^+\pi^-\pi^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M28.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively. Our theoretical results for the two-body decays <jats:inline-formula> <jats:tex-math><?CDATA $\bar{B}^0\rightarrow \bar{K}^*(892)^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M29.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $f_0(980)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M30.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{B}^0\rightarrow \bar{K}^*_0(1430)^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M31.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $\omega(782)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M32.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{B}^0\rightarrow \bar{K}^*(892)^0f_0(980)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M33.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{B}^0\rightarrow $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M34.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{K}^*_0(1430)^0\rho$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M34-1.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $\bar{B}^0\rightarrow\bar{K}^*_0(1430)^0\omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053104_M35.jpg" xlink:type="simple" /> </jats:inline-formula> are consistent with the available experimental data, with the remaining predictions await testing in future high precision experiments. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 053104
Rescattering mechanism of weak decays of double-charm baryons *
Jia-Jie Han; Hua-Yu Jiang; Wei Liu; Zhen-Jun Xiao; Fu-Sheng Yu
<jats:title>Abstract</jats:title> <jats:p>The doubly charmed baryon <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi_{cc}^{++} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053105_M1.jpg" xlink:type="simple" /> </jats:inline-formula> was recently observed by LHCb via the decay processes of <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi_{cc}^{++}\to \Lambda_c^+ K^-\pi^+\pi^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053105_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Xi_c^+\pi^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053105_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. These discovery channels were successfully predicted in a framework in which the short-distance contributions are calculated under the factorization hypothesis and the long-distance contributions are estimated using the rescattering mechanism for the final-state-interaction effects. In this paper, we illustrate the above framework in detail by systematic studies on the two-body baryonic decays <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{B}}_{cc}\to{\cal{B}}_{c}P $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053105_M4.jpg" xlink:type="simple" /> </jats:inline-formula> involving the doubly charmed baryons <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{B}}_{cc} = (\Xi_{cc}^{++} , \Xi_{cc}^+,\Omega_{cc}^+) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053105_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, the singly charmed baryons <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{B}}_{c} = ({\cal{B}}_{\bar{3}}, {\cal{B}}_{6}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053105_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and the light pseudoscalar mesons <jats:inline-formula> <jats:tex-math><?CDATA $ P = (\pi,K,\eta_{1,8}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_053105_M7.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 053105
Fusion reactions around the barrier for Be+238U *
Bo Mei; Dimiter L. Balabanski; Wei Hua; Yu-Hu Zhang; Xiao-Hong Zhou; Cen-Xi Yuan; Jun Su
<jats:title>Abstract</jats:title> <jats:p>Fusion-evaporation cross sections of <jats:inline-formula> <jats:tex-math><?CDATA $^{238}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054001_M1.jpg" xlink:type="simple" /> </jats:inline-formula>U( <jats:inline-formula> <jats:tex-math><?CDATA $^{9}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054001_M2.jpg" xlink:type="simple" /> </jats:inline-formula>Be, 5<jats:italic>n</jats:italic>) <jats:inline-formula> <jats:tex-math><?CDATA $^{242}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>Cm are measured over a wide energy range around the Coulomb barrier. These measured cross sections are compared with model calculations using two codes, namely HIVAP2 and KEWPIE2. HIVAP2 calculations overestimate the measured fusion-evaporation cross sections by a factor of approximately 3. In KEWPIE2 calculations, two approaches, namely the Wentzel-Kramers-Brillouin (WKB) approximation and the empirical barrier-distribution (EBD) method, are used for the capture probability; both of them properly describe the measured cross sections. Additionally, fusion cross sections of <jats:inline-formula> <jats:tex-math><?CDATA $^{7,9}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054001_M4.jpg" xlink:type="simple" /> </jats:inline-formula>Be+ <jats:inline-formula> <jats:tex-math><?CDATA $^{238}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054001_M5.jpg" xlink:type="simple" /> </jats:inline-formula>U measured in two experiments are applied to constrain model calculations further through three codes, i.e., HIVAP2, KEWPIE2, and CCFULL. Parameters in these codes are also examined by comparison with measured fusion cross sections. All the comparisons indicate that the KEWPIE2 calculations using the WKB approximation agree well with the measured cross sections of both fusion reactions <jats:inline-formula> <jats:tex-math><?CDATA $^{7,9}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054001_M6.jpg" xlink:type="simple" /> </jats:inline-formula>Be+ <jats:inline-formula> <jats:tex-math><?CDATA $^{238}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054001_M7.jpg" xlink:type="simple" /> </jats:inline-formula>U and the fusion-evaporation reaction <jats:inline-formula> <jats:tex-math><?CDATA $^{238}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054001_M8.jpg" xlink:type="simple" /> </jats:inline-formula>U( <jats:inline-formula> <jats:tex-math><?CDATA $^{9}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054001_M9.jpg" xlink:type="simple" /> </jats:inline-formula>Be, 5<jats:italic>n</jats:italic>) <jats:inline-formula> <jats:tex-math><?CDATA $^{242}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054001_M10.jpg" xlink:type="simple" /> </jats:inline-formula>Cm. Calculations using the fusion code CCFULL are also in good agreement with the measured fusion cross sections of <jats:inline-formula> <jats:tex-math><?CDATA $^{7,9}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054001_M11.jpg" xlink:type="simple" /> </jats:inline-formula>Be+ <jats:inline-formula> <jats:tex-math><?CDATA $^{238}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054001_M12.jpg" xlink:type="simple" /> </jats:inline-formula>U. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 054001
The effect of hadronic scatterings on the measurement of vector meson spin alignments in heavy-ion collisions *
Diyu Shen; Jinhui Chen; Zi-Wei Lin
<jats:title>Abstract</jats:title> <jats:p>Spin alignments of vector mesons and hyperons in relativistic heavy-ion collisions have been proposed as signals of global polarization. The STAR experiment first observed the <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M1.jpg" xlink:type="simple" /> </jats:inline-formula> polarization. Recently, the ALICE collaboration measured the transverse momentum ( <jats:inline-formula> <jats:tex-math><?CDATA $p_T$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M2.jpg" xlink:type="simple" /> </jats:inline-formula>) and the collision centrality dependence of <jats:inline-formula> <jats:tex-math><?CDATA $K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $\phi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M4.jpg" xlink:type="simple" /> </jats:inline-formula> spin alignments during Pb-Pb collisions at <jats:inline-formula> <jats:tex-math><?CDATA $\sqrt {{s_{{\rm NN}}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M5.jpg" xlink:type="simple" /> </jats:inline-formula> = 2.76 TeV. A large signal is observed in the low <jats:inline-formula> <jats:tex-math><?CDATA $p_T$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M6.jpg" xlink:type="simple" /> </jats:inline-formula> region of mid-central collisions for <jats:inline-formula> <jats:tex-math><?CDATA $K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, while the signal is much smaller for <jats:inline-formula> <jats:tex-math><?CDATA $\phi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, and these have not been understood yet. Since vector mesons have different lifetimes and their decay products have different scattering cross sections, they suffer from different hadronic effects. In this paper, we study the effect of hadronic interactions on the spin alignment of <jats:inline-formula> <jats:tex-math><?CDATA $K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\phi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $\rho$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M11.jpg" xlink:type="simple" /> </jats:inline-formula> mesons in relativistic heavy-ion collisions with a multi-phase transport model. We find that hadronic scatterings lead to a deviation of the observed spin alignment matrix element <jats:inline-formula> <jats:tex-math><?CDATA $\rho_{00}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M12.jpg" xlink:type="simple" /> </jats:inline-formula> away from the true value for <jats:inline-formula> <jats:tex-math><?CDATA $\rho$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M13.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M14.jpg" xlink:type="simple" /> </jats:inline-formula> mesons (with a bigger effect on <jats:inline-formula> <jats:tex-math><?CDATA $\rho$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M15.jpg" xlink:type="simple" /> </jats:inline-formula>) while the effect is negligible for the <jats:inline-formula> <jats:tex-math><?CDATA $\phi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M16.jpg" xlink:type="simple" /> </jats:inline-formula> meson. The effect depends on the kinematic acceptance: the observed <jats:inline-formula> <jats:tex-math><?CDATA $\rho_{00}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M17.jpg" xlink:type="simple" /> </jats:inline-formula> value is lower than the true value when the pseudorapidity ( <jats:inline-formula> <jats:tex-math><?CDATA $\eta$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M18.jpg" xlink:type="simple" /> </jats:inline-formula>) coverage is small, while there is little effect when the <jats:inline-formula> <jats:tex-math><?CDATA $\eta$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054002_M19.jpg" xlink:type="simple" /> </jats:inline-formula> coverage is large. Hence, this study provides valuable information to understand the vector meson spin alignment signals observed during the experiments. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 054002
Renormalizability of leading order covariant chiral nucleon-nucleon interaction *
Chun-Xuan Wang; Li-Sheng Geng; Bingwei Long
<jats:title>Abstract</jats:title> <jats:p>In this work, we study the renormalization group invariance of the recently proposed covariant power counting in the case of nucleon-nucleon scattering [Chin. Phys. C 42 (2018) 014103] at leading order. We show that unlike the Weinberg scheme, renormalizaion group invariance is satisfied in the <jats:inline-formula> <jats:tex-math><?CDATA $^3P_{0}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> channel. Another interesting feature is that the <jats:inline-formula> <jats:tex-math><?CDATA $^1S_{0}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $^3P_{1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M3.jpg" xlink:type="simple" /> </jats:inline-formula> channels are correlated. Fixing the relevant low energy constants by fitting to the <jats:inline-formula> <jats:tex-math><?CDATA $^1S_{0}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M4.jpg" xlink:type="simple" /> </jats:inline-formula> phase shifts at <jats:inline-formula> <jats:tex-math><?CDATA $T_\mathrm{lab.}=10$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and 25 MeV with cutoff values <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda = 400-650$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M6.jpg" xlink:type="simple" /> </jats:inline-formula> MeV, one can describe the <jats:inline-formula> <jats:tex-math><?CDATA $^3P_{1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M7.jpg" xlink:type="simple" /> </jats:inline-formula> phase shifts relatively well. In the limit of <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda\rightarrow \infty$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, the <jats:inline-formula> <jats:tex-math><?CDATA $^1S_0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M9.jpg" xlink:type="simple" /> </jats:inline-formula> phase shifts become cutoff-independent, whereas the <jats:inline-formula> <jats:tex-math><?CDATA $^3P_{1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M10.jpg" xlink:type="simple" /> </jats:inline-formula> phase shifts do not. This is consistent with the Wigner bound and previous observations that the <jats:inline-formula> <jats:tex-math><?CDATA $^{3}P_1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M11.jpg" xlink:type="simple" /> </jats:inline-formula> channel is best treated perturbatively. As for the <jats:inline-formula> <jats:tex-math><?CDATA $^1P_{1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M12.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $^3S_{1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M13.jpg" xlink:type="simple" /> </jats:inline-formula>- <jats:inline-formula> <jats:tex-math><?CDATA $^3D_{1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054101_M14.jpg" xlink:type="simple" /> </jats:inline-formula> channels, renormalization group invariance is satisfied. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 054101
Production of bottomonium-like Zb states in e-h and ultraperipheral h-h collisions *
Xiao-Yun Wang; Wei Kou; Qing-Yong Lin; Ya-Ping Xie; Xurong Chen; Alexey Guskov
<jats:title>Abstract</jats:title> <jats:p>The photoproduction of the bottomonium-like states <jats:inline-formula> <jats:tex-math><?CDATA $ Z_{b}(10610) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ Z_{b}(10650) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M2.jpg" xlink:type="simple" /> </jats:inline-formula> via <jats:inline-formula> <jats:tex-math><?CDATA $ \gamma p $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> scattering is studied within an effective Lagrangian approach and the vector-meson-dominance model. The Regge model is employed to calculate the photoproduction of <jats:inline-formula> <jats:tex-math><?CDATA $ Z_{b} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> states via the <jats:italic>t</jats:italic>-channel with <jats:inline-formula> <jats:tex-math><?CDATA $ \pi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> exchange. The numerical results show that the values of the total cross-sections of <jats:inline-formula> <jats:tex-math><?CDATA $ Z_{b}(10610) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ Z_{b}(10650) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M7.jpg" xlink:type="simple" /> </jats:inline-formula> can reach 0.09 nb and 0.02 nb, respectively, near the center-of-mass energy of 22 GeV. Experimental measurements and studies of the photoproduction of <jats:inline-formula> <jats:tex-math><?CDATA $ Z_{b} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M8.jpg" xlink:type="simple" /> </jats:inline-formula> states near the energy region around <jats:inline-formula> <jats:tex-math><?CDATA $ W\simeq 22 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M9.jpg" xlink:type="simple" /> </jats:inline-formula> GeV are suggested. Moreover, with the help of eSTARlight and STARlight programs, we have obtained the cross-sections and numbers of events for <jats:inline-formula> <jats:tex-math><?CDATA $ Z_{b}(10610) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M10.jpg" xlink:type="simple" /> </jats:inline-formula> production in electron-ion collisions (EIC) and ultraperipheral collisions (UPCs). The results show that a considerable number of <jats:inline-formula> <jats:tex-math><?CDATA $ Z_{b}(10610) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M11.jpg" xlink:type="simple" /> </jats:inline-formula> events can be produced in the relevant experiments on EICs and UPCs. We have also calculated the rates and kinematic distributions for <jats:inline-formula> <jats:tex-math><?CDATA $ \gamma p\rightarrow Z_{b}n $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M12.jpg" xlink:type="simple" /> </jats:inline-formula> in <jats:inline-formula> <jats:tex-math><?CDATA $ ep $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M13.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ pA $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M14.jpg" xlink:type="simple" /> </jats:inline-formula> collisions via EICs and UPCs. The results will provide an important reference for the RHIC, LHC, EIC-US, LHeC, and FCC experiments in searching for bottomonium-like <jats:inline-formula> <jats:tex-math><?CDATA $ Z_{b} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054102_M15.jpg" xlink:type="simple" /> </jats:inline-formula> states. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 054102
Nucleon-pair approximation with uncoupled representation *
Y. Lei; Y. Lu; Y. M. Zhao
<jats:title>Abstract</jats:title> <jats:p>In this paper, we propose an approach to nucleon-pair approximation (NPA) with <jats:italic>m</jats:italic>-scheme bases, in which the collective nucleon pairs are represented in terms of antisymmetric matrices, and commutations between nucleon pairs are given using a matrix multiplication that avoids angular-momentum couplings and recouplings. Therefore the present approach significantly simplifies the NPA computation. Furthermore, it is formulated on the same footing with and without isospin. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 054103
Relative probabilities of breakup channels in reactions of 6,7Li with 209Bi at energies around and above the Coulomb barrier *
Yong-Jin Yao; Cheng-Jian Lin; Lei Yang; Nan-Ru Ma; Dong-Xi Wang; Gao-long Zhang; Guang-Xin Zhang; Hui-Ming Jia; Feng Yang; Fu-Peng Zhong; Pei-Wei Wen; Xiu-Bo Qin; Hong-Ming Zhao
<jats:title>Abstract</jats:title> <jats:p>Coincidence measurements of breakup fragments in reactions of <jats:inline-formula> <jats:tex-math><?CDATA ${^{6, 7}{\rm{Li}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054104_M1.jpg" xlink:type="simple" /> </jats:inline-formula> with <jats:inline-formula> <jats:tex-math><?CDATA ${^{209}{\rm{Bi}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054104_M2.jpg" xlink:type="simple" /> </jats:inline-formula> at energies around and above the Coulomb barrier were carried out using a large solid-angle covered detector array. Through the <jats:italic>Q</jats:italic> values along with the relative energies of the breakup fragments, different breakup components (prompt breakups and delayed breakups) and different breakup modes ( <jats:inline-formula> <jats:tex-math><?CDATA $\alpha + t$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054104_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\alpha + d$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054104_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\alpha + p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054104_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $\alpha + \alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054104_M7.jpg" xlink:type="simple" /> </jats:inline-formula>) are distinguished. A new breakup mode, <jats:inline-formula> <jats:tex-math><?CDATA $\alpha + t$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054104_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, is observed in <jats:inline-formula> <jats:tex-math><?CDATA ${^{6}{\rm{Li}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_5_054104_M9.jpg" xlink:type="simple" /> </jats:inline-formula>-induced reactions at energies above the Coulomb barrier. Correlations between breakup modes and breakup components as well as their variations with the incident energy are investigated. The results will help us better understand the breakup effects of weakly bound nuclei on the suppression of a complete fusion, particularly for the above-barrier energies. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 054104