Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Entropic force between two horizons of dilaton black holes with a power-Maxwell field *
Hui-Hua Zhao; Li-Chun Zhang; Ying Gao; Fang Liu
<jats:title>Abstract</jats:title> <jats:p>In this paper, we consider <jats:inline-formula> <jats:tex-math><?CDATA $ (n+1) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043111_M1.jpg" xlink:type="simple" /> </jats:inline-formula>-dimensional topological dilaton de Sitter black holes with a power-Maxwell field as thermodynamic systems. The thermodynamic quantities corresponding to the black hole horizon and the cosmological horizon are interrelated. Therefore, the total entropy of the space-time should be the sum of the entropies of the black hole horizon and the cosmological horizon plus a correction term which is produced by the association of the two horizons. We analyze the entropic force produced by the correction term at given temperatures, which is affected by the parameters and dimensions of the space-time. It is shown that the change of entropic force with the position ratio of the two horizons in some regions is similar to that of the variation of the Lennard-Jones force with the position of particles. If the effect of entropic force is similar to that of the Lennard-Jones force, and other forces are absent, the motion of the cosmological horizon relative to the black hole horizon should have an oscillating process. The entropic force between the two horizons is probably one of the participants in driving the evolution of the universe. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 043111
Multiscalar B-L extension based on S 4 flavor symmetry for neutrino masses and mixing *
V. V. Vien; H. N. Long
<jats:title>Abstract</jats:title> <jats:p>A multiscalar and nonrenormalizable <jats:inline-formula> <jats:tex-math><?CDATA $B-L$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M1.jpg" xlink:type="simple" /> </jats:inline-formula> extension of the standard model (SM) with <jats:inline-formula> <jats:tex-math><?CDATA $S_4$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M2.jpg" xlink:type="simple" /> </jats:inline-formula> symmetry which successfully explains the recently observed neutrino oscillation data is proposed. The tiny neutrino masses and their hierarchies are generated via the type-I seesaw mechanism. The model reproduces the recent experiments of neutrino mixing angles and Dirac CP violating phase in which the atmospheric angle <jats:inline-formula> <jats:tex-math><?CDATA $(\theta_{23})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and the reactor angle <jats:inline-formula> <jats:tex-math><?CDATA $(\theta_{13})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M4.jpg" xlink:type="simple" /> </jats:inline-formula> get the best-fit values while the solar angle <jats:inline-formula> <jats:tex-math><?CDATA $(\theta_{12})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and Dirac CP violating phase ( <jats:inline-formula> <jats:tex-math><?CDATA $\delta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M6.jpg" xlink:type="simple" /> </jats:inline-formula>) are in <jats:inline-formula> <jats:tex-math><?CDATA $3\, \sigma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M7.jpg" xlink:type="simple" /> </jats:inline-formula> range of the best-fit value for the normal hierarchy (NH). For the inverted hierarchy (IH), <jats:inline-formula> <jats:tex-math><?CDATA $\theta_{13}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M8.jpg" xlink:type="simple" /> </jats:inline-formula> gets the best-fit value and <jats:inline-formula> <jats:tex-math><?CDATA $\theta_{23}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M9.jpg" xlink:type="simple" /> </jats:inline-formula> together with <jats:inline-formula> <jats:tex-math><?CDATA $\delta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M10.jpg" xlink:type="simple" /> </jats:inline-formula> are in the <jats:inline-formula> <jats:tex-math><?CDATA $1\, \sigma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M11.jpg" xlink:type="simple" /> </jats:inline-formula> range, while <jats:inline-formula> <jats:tex-math><?CDATA $\theta_{12}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M12.jpg" xlink:type="simple" /> </jats:inline-formula> is in <jats:inline-formula> <jats:tex-math><?CDATA $3\, \sigma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M13.jpg" xlink:type="simple" /> </jats:inline-formula> range of the best-fit value. The effective neutrino masses are predicted to be <jats:inline-formula> <jats:tex-math><?CDATA $\langle m_{ee}\rangle=6.81 \,\, {\rm{meV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M14.jpg" xlink:type="simple" /> </jats:inline-formula> for the NH and <jats:inline-formula> <jats:tex-math><?CDATA $\langle m_{ee}\rangle=48.48\,\, {\rm{meV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043112_M15.jpg" xlink:type="simple" /> </jats:inline-formula> for the IH, in good agreement with the most recent experimental data. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 043112
Fine structure of α decay in 222Pa *
Wei Hua; Zhiyuan Zhang; Long Ma; Zaiguo Gan; Huabin Yang; Cenxi Yuan; Minghui Huang; Chunli Yang; Mingming Zhang; Yulin Tian; Xiaohong Zhou
<jats:title>Abstract</jats:title> <jats:p>With the help of the gas-filled recoil spectrometer SHANS and a digital data acquisition system, the fine structure of the <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> decay for <jats:inline-formula> <jats:tex-math><?CDATA $^{222}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M2.jpg" xlink:type="simple" /> </jats:inline-formula>Pa was studied. The nuclides were produced through the 1<jats:italic>p</jats:italic>3<jats:italic>n</jats:italic> evaporation channel via the heavy-ion induced fusion evaporation reaction <jats:inline-formula> <jats:tex-math><?CDATA $^{40}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>Ar + <jats:inline-formula> <jats:tex-math><?CDATA $^{186}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M4.jpg" xlink:type="simple" /> </jats:inline-formula>W. Based on the ER- <jats:inline-formula> <jats:tex-math><?CDATA $\alpha 1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M5.jpg" xlink:type="simple" /> </jats:inline-formula>- <jats:inline-formula> <jats:tex-math><?CDATA $\alpha 2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M6.jpg" xlink:type="simple" /> </jats:inline-formula>- <jats:inline-formula> <jats:tex-math><?CDATA $\alpha 3$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M8.jpg" xlink:type="simple" /> </jats:inline-formula>- <jats:inline-formula> <jats:tex-math><?CDATA $\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M9.jpg" xlink:type="simple" /> </jats:inline-formula> correlation measurement, three new <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M10.jpg" xlink:type="simple" /> </jats:inline-formula> decays were observed in addition to the three branches known previously. The one with the largest <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M11.jpg" xlink:type="simple" /> </jats:inline-formula> decay energy was regarded as the ground state to ground state transition. The newly measured <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M12.jpg" xlink:type="simple" /> </jats:inline-formula> decay properties of <jats:inline-formula> <jats:tex-math><?CDATA $^{222}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044001_M13.jpg" xlink:type="simple" /> </jats:inline-formula>Pa were examined in a framework of reduced width. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 044001
Measurements of dihadron correlations relative to the event plane in Au+Au collisions at GeV *
H. Agakishiev; M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; I. Alekseev; J. Alford; B. D. Anderson; C. D. Anson; D. Arkhipkin; G. S. Averichev; J. Balewski; D. R. Beavis; N. K. Behera; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; B. Biritz; L. C. Bland; W. Borowski; J. Bouchet; E. Braidot; A. V. Brandin; A. Bridgeman; S. G. Brovko; E. Bruna; S. Bueltmann; I. Bunzarov; T. P. Burton; X. Z. Cai; H. Caines; M. Calderón de la Barca Sánchez; D. Cebra; R. Cendejas; M. C. Cervantes; Z. Chajecki; P. Chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; P. Chung; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; S. Dash; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; J. C. Dunlop; L. G. Efimov; M. Elnimr; J. Engelage; G. Eppley; M. Estienne; L. Eun; O. Evdokimov; R. Fatemi; J. Fedorisin; A. Feng; R. G. Fersch; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; D. R. Gangadharan; A. Geromitsos; F. Geurts; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. Grebenyuk; D. Grosnick; S. M. Guertin; A. Gupta; W. Guryn; B. Haag; O. Hajkova; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; M. Heinz; S. Heppelmann; A. Hirsch; E. Hjort; G. W. Hoffmann; D. J. Hofman; B. Huang; H. Z. Huang; T. J. Humanic; L. Huo; G. Igo; P. Jacobs; W. W. Jacobs; C. Jena; F. Jin; J. Joseph; E. G. Judd; S. Kabana; K. Kang; J. Kapitan; K. Kauder; H. Ke; D. Keane; A. Kechechyan; D. Kettler; D. P. Kikola; J. Kiryluk; A. Kisiel; V. Kizka; A. G. Knospe; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Koroleva; W. Korsch; L. Kotchenda; V. Kouchpil; P. Kravtsov; K. Krueger; M. Krus; L. Kumar; P. Kurnadi; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; W. Leight; M. J. LeVine; C. Li; L. Li; N. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; H. Liu; J. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; W. A. Love; Y. Lu; E. V. Lukashov; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; O. I. Mall; L. K. Mangotra; R. Manweiler; S. Margetis; C. Markert; H. Masui; H. S. Matis; Yu. A. Matulenko; D. McDonald; T. S. McShane; A. Meschanin; R. Milner; N. G. Minaev; S. Mioduszewski; A. Mischke; M. K. Mitrovski; B. Mohanty; M. M. Mondal; B. Morozov; D. A. Morozov; M. G. Munhoz; M. Naglis; B. K. Nandi; T. K. Nayak; P. K. Netrakanti; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; Oh; Ohlson; V. Okorokov; E. W. Oldag; D. Olson; M. Pachr; B. S. Page; S. K. Pal; Y. Pandit; Y. Panebratsev; T. Pawlak; H. Pei; T. Peitzmann; C. Perkins; W. Peryt; S. C. Phatak; P. Pile; M. Planinic; M. A. Ploskon; J. Pluta; D. Plyku; N. Poljak; A. M. Poskanzer; B. V. K. S. Potukuchi; C. B. Powell; D. Prindle; N. K. Pruthi; P. R. Pujahari; J. Putschke; H. Qiu; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; R. Reed; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; A. Rose; L. Ruan; J. Rusnak; N. R. Sahoo; S. Sakai; I. Sakrejda; T. Sakuma; S. Salur; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; N. Schmitz; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; D. Staszak; S. G. Steadman; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; D. Tlusty; M. Tokarev; V. N. Tram; S. Trentalange; R. E. Tribble; Tribedy; O. D. Tsai; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; F. Videbæk; Y. P. Viyogi; S. Vokal; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; W. Witzke; Y. F. Wu; Xiao; W. Xie; H. Xu; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; P. Yepes; K. Yip; I-K. Yoo; M. Zawisza; H. Zbroszczyk; W. Zhan; J. B. Zhang; S. Zhang; W. M. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; J. Zhao; C. Zhong; W. Zhou; X. Zhu; Y. H. Zhu; R. Zoulkarneev; Y. Zoulkarneeva
<jats:title>Abstract</jats:title> <jats:p>Dihadron azimuthal correlations containing a high transverse momentum ( <jats:inline-formula> <jats:tex-math><?CDATA $ p_{T} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M2.jpg" xlink:type="simple" /> </jats:inline-formula>) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to <jats:italic>p</jats:italic>+<jats:italic>p</jats:italic> and <jats:italic>d</jats:italic>+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20%-60%) Au+Au collisions at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s_{\rm{NN}}} = 200 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M3.jpg" xlink:type="simple" /> </jats:inline-formula> GeV as a function of the trigger particle's azimuthal angle relative to the event plane, <jats:inline-formula> <jats:tex-math><?CDATA $ \phi_{s} = | \phi_{t}- \psi_{{\rm{EP}}}| $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M4.jpg" xlink:type="simple" /> </jats:inline-formula>. The azimuthal correlation is studied as a function of both the trigger and associated particle <jats:inline-formula> <jats:tex-math><?CDATA $ p_{T} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M5.jpg" xlink:type="simple" /> </jats:inline-formula>. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with <jats:inline-formula> <jats:tex-math><?CDATA $ \phi_{s} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity <jats:inline-formula> <jats:tex-math><?CDATA $ \Delta\eta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M7.jpg" xlink:type="simple" /> </jats:inline-formula> correlation) appears to drop with increasing <jats:inline-formula> <jats:tex-math><?CDATA $ \phi_{s} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M8.jpg" xlink:type="simple" /> </jats:inline-formula> while the jet-like component remains approximately constant. The correlation functions are further studied with the subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the <jats:inline-formula> <jats:tex-math><?CDATA $ \phi_{s} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M9.jpg" xlink:type="simple" /> </jats:inline-formula>-dependence of the ridge or the away-side double-peak structure. The dropping ridge with <jats:inline-formula> <jats:tex-math><?CDATA $ \phi_{s} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M10.jpg" xlink:type="simple" /> </jats:inline-formula> could be attributed to a <jats:inline-formula> <jats:tex-math><?CDATA $ \phi_{s} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M11.jpg" xlink:type="simple" /> </jats:inline-formula>-dependent elliptic anisotropy; however, the physics mechanism of the ridge remains an open question. Even with a <jats:inline-formula> <jats:tex-math><?CDATA $ \phi_{s} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M12.jpg" xlink:type="simple" /> </jats:inline-formula>-dependent elliptic flow, the away-side correlation structure is robust. These results, with extensive systematic studies of the dihadron correlations as a function of <jats:inline-formula> <jats:tex-math><?CDATA $ \phi_{s} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, trigger and associated particle <jats:inline-formula> <jats:tex-math><?CDATA $ p_{T} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M14.jpg" xlink:type="simple" /> </jats:inline-formula>, and the pseudo-rapidity range <jats:inline-formula> <jats:tex-math><?CDATA $ \Delta\eta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044002_M15.jpg" xlink:type="simple" /> </jats:inline-formula>, should provide stringent inputs to help understand the underlying physics mechanisms of jet-medium interactions in high energy nuclear collisions. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 044002
α-decay study of 218Ac and 221Th in 40Ar+186W reaction *
Wei Hua; Zhiyuan Zhang; Long Ma; Zaiguo Gan; Huabin Yang; Minghui Huang; Chunli Yang; Mingming Zhang; Yulin Tian; Xiaohong Zhou; Cenxi Yuan; Caiwan Shen; Long Zhu
<jats:title>Abstract</jats:title> <jats:p>In this study, <jats:sup>218</jats:sup>Ac and <jats:sup>221</jats:sup>Th nuclides were produced via the heavy-ion induced fusion evaporation reaction <jats:sup>40</jats:sup>Ar + <jats:sup>186</jats:sup>W. Their decay properties were studied with the help of the gas-filled recoil spectrometer SHANS and a digital data acquisition system. The cross section ratio between <jats:sup>222</jats:sup>Pa and <jats:sup>218</jats:sup>Ac was extracted experimentally, with measured value 0.69(9). Two new possible <jats:italic>α</jats:italic> decay branches to <jats:sup>221</jats:sup>Th are suggested. The valence neutron configurations for the daughter <jats:sup>217</jats:sup>Ra are discussed in terms of the hindrance factors. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 044003
Measurement of 59Co(n, x) reaction cross sections with the fast neutrons based on the 9Be(p, n) reaction *
Muhammad Zaman; Muhammad Nadeem; Muhammad Sahid; Kwangsoo Kim; Guinyun Kim; Nguyen Thi Hien
<jats:title>Abstract</jats:title> <jats:p>The cross sections of the <jats:sup>59</jats:sup>Co(<jats:italic>n</jats:italic>, <jats:italic>x</jats:italic>) reaction in the average energy range of 15.2-37.2 MeV were measured using activation and an off-line γ-ray spectrometric technique. The neutrons were generated from the <jats:sup>9</jats:sup>Be(<jats:italic>p</jats:italic>, <jats:italic>n</jats:italic>) reaction with proton beam energies of 25-45 MeV at the MC-50 Cyclotron facility of the Korean Institute of Radiological and Medical Sciences (KIRAMS). Theoretical calculations of neutron–induced reactions on <jats:sup>59</jats:sup>Co were performed using the nuclear model code TALYS-1.9. The results for the <jats:sup>59</jats:sup>Co(<jats:italic>n</jats:italic>, <jats:italic>x</jats:italic>) reactions were compared with the theoretical values obtained using TALYS-1.9 and the literature data provided in EXFOR and the TENDL 2019 nuclear data library. The theoretical values obtained using TALYS-1.9 with adjusted parameters are comparable to the experimental data. The measured reaction cross sections of a few radionuclides are new, and the others are comparable to the literature data, and thus, they can strengthen the database. The present study on cross sections leads to useful insight into the mechanisms of <jats:sup>59</jats:sup>Co(<jats:italic>n</jats:italic>, <jats:italic>x</jats:italic>) reactions. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 044004
Nucleon stripping in deuteron-induced spallation reactions at hundreds MeV/nucleon *
Qu-Fei Song; Su-Yang Xu; Jun Su
<jats:title>Abstract</jats:title> <jats:p>A nucleon-nucleus dynamics model was developed to investigate the proton-, neutron-, and deuteron-induced reactions at hundreds of MeV/nucleon. In this model, the trajectory of incident nucleon is described by classical mechanics, and the probability of reaction between the nucleon and nucleus is calculated by exponential damping. It is shown that the total reaction cross sections calculated by the model agree in general with the predictions by the CDCC and the experimental data. The model was applied to investigate the nucleon stripping in deuteron-induced reactions and its symmetry energy dependence.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 044101
Longitudinal dynamics from hydrodynamics with an order parameter *
Shu Lin; Gezheng Zhou
<jats:title>Abstract</jats:title> <jats:p>We studied coupled dynamics of hydrodynamic fields and order parameter in the presence of nontrivial longitudinal flow using the chiral fluid dynamics model. We found that longitudinal expansion provides an effective relaxation for the order parameter, which equilibrates in an oscillatory fashion. Similar oscillations are also visible in hydrodynamic degrees of freedom through coupled dynamics. The oscillations are reduced when dissipation is present. We also found that the quark density, which initially peaked at the boundary of the boost invariant region, evolves toward forward rapidity with the peak velocity correlated with the velocity of longitudinal expansion. The peak broadens during this evolution. The corresponding chemical potential rises due to simultaneous decrease of density and temperature. We compared the cases with and without dissipation for the order parameter and also the standard hydrodynamics without order parameter. We found that the corresponding effects on temperature and chemical potential can be understood from the conservation laws and different speeds of equilibration of the order parameter in the three cases.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 044102
Exploring the uncertainties in theoretical predictions of nuclear β-decay half-lives *
M. Shi; J. Y. Fang; Z. M. Niu
<jats:title>Abstract</jats:title> <jats:p>Nuclear <jats:inline-formula> <jats:tex-math><?CDATA $ \beta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044103_M1.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-lives are predicted based on an empirical formula and the mass predictions from various nuclear models. It is found that the empirical formula can reproduce the nuclear <jats:inline-formula> <jats:tex-math><?CDATA $ \beta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044103_M2.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-lives well, especially for short-lived nuclei with <jats:inline-formula> <jats:tex-math><?CDATA $ T_{1/2}\lt 1 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044103_M3.jpg" xlink:type="simple" /> </jats:inline-formula> s. The theoretical half-life uncertainties from <jats:inline-formula> <jats:tex-math><?CDATA $ \beta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044103_M4.jpg" xlink:type="simple" /> </jats:inline-formula>-decay energies and the parameters of the empirical formula are further investigated. It is found that the uncertainties of the half-lives are relatively large for heavy nuclei and nuclei near the neutron-drip line. For nuclei on the <jats:italic>r</jats:italic>-process path, the uncertainties for those with <jats:inline-formula> <jats:tex-math><?CDATA $ N = 126 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044103_M5.jpg" xlink:type="simple" /> </jats:inline-formula> are about one order of magnitude, which are much larger than the uncertainties for those with <jats:inline-formula> <jats:tex-math><?CDATA $ N = 50 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044103_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ 82 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044103_M7.jpg" xlink:type="simple" /> </jats:inline-formula>. However, theoretical uncertainties from the parameters of the empirical formula are relatively small for the nuclei on the <jats:italic>r</jats:italic>-process path, which indicates that the empirical formula is very suitable for predicting the <jats:inline-formula> <jats:tex-math><?CDATA $ \beta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044103_M8.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-lives in <jats:italic>r</jats:italic>-process simulations. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 044103
Effect of momentum anisotropy on quark matter in the quark-meson model *
He-Xia Zhang; Ben-Wei Zhang
<jats:title>Abstract</jats:title> <jats:p>We investigate the chiral phase structure of quark matter with spheroidal momentum-space anisotropy specified by one anisotropy parameter <jats:inline-formula> <jats:tex-math><?CDATA $\xi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044104_M1.jpg" xlink:type="simple" /> </jats:inline-formula> in the 2+1 flavor quark-meson model. We find that the chiral phase diagram and the location of the critical endpoint (CEP) are significantly affected by the value of <jats:inline-formula> <jats:tex-math><?CDATA $\xi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044104_M2.jpg" xlink:type="simple" /> </jats:inline-formula>. With an increase in <jats:inline-formula> <jats:tex-math><?CDATA $\xi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044104_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, the CEP is shifted to lower temperatures and higher quark chemical potentials. In addition, the temperature of the CEP is more sensitive to the anisotropy parameter than the corresponding quark chemical potential, which is the opposite to that from the finite system volume effect. The effects of the momentum anisotropy on the thermodynamic properties and scalar (pseudoscalar) meson masses are also studied at the vanishing quark chemical potential. The numerical results reveal that an increase in <jats:inline-formula> <jats:tex-math><?CDATA $\xi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> can hinder the restoration of chiral symmetry. We also find that shear viscosity and electrical conductivity decrease as <jats:inline-formula> <jats:tex-math><?CDATA $\xi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> increases. However, the bulk viscosity exhibits a significant non-trivial behavior with <jats:inline-formula> <jats:tex-math><?CDATA $\xi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_044104_M6.jpg" xlink:type="simple" /> </jats:inline-formula> in the entire temperature domain of interest. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 044104