Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

The NUBASE2020 evaluation of nuclear physics properties *

F.G. Kondev; M. Wang; W.J. Huang; S. Naimi; G. Audi

<jats:title>Abstract</jats:title> <jats:p>The NUBASE2020 evaluation contains the recommended values of the main nuclear physics properties for all nuclei in their ground and excited, isomeric (T<jats:sub>1/2</jats:sub> <jats:inline-formula> <jats:tex-math><?CDATA $\ge$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_3_030001_Z-20210303134733.jpg" xlink:type="simple" /> </jats:inline-formula>100 ns) states. It encompasses all experimental data published in primary (journal articles) and secondary (mainly laboratory reports and conference proceedings) references, together with the corresponding bibliographical information. In cases where no experimental data were available for a particular nuclide, trends in the behavior of specific properties in neighboring nuclei were examined and estimated values are proposed. Evaluation procedures and policies that were used during the development of this evaluated nuclear data library are presented, together with a detailed table of recommended values and their uncertainties. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 030001

The AME 2020 atomic mass evaluation (I). Evaluation of input data, and adjustment procedures*

W.J. Huang; Meng Wang; F.G. Kondev; G. Audi; S. Naimi

<jats:title>Abstract</jats:title> <jats:p>This is the first of two articles (Part I and Part II) that presents the results of the new atomic mass evaluation, AME2020. It includes complete information on the experimental input data that were used to derive the tables of recommended values which are given in Part II. This article describes the evaluation philosophy and procedures that were implemented in the selection of specific nuclear reaction, decay and mass-spectrometric data which were used in a least-squares fit adjustment in order to determine the recommended mass values and their uncertainties. All input data, including both the accepted and rejected ones, are tabulated and compared with the adjusted values obtained from the least-squares fit analysis. Differences with the previous AME2016 evaluation are discussed and specific examples are presented for several nuclides that may be of interest to AME users.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 030002

The AME 2020 atomic mass evaluation (II). Tables, graphs and references*

Meng Wang; W.J. Huang; F.G. Kondev; G. Audi; S. Naimi

<jats:title>Abstract</jats:title> <jats:p>This is the second part of the new evaluation of atomic masses, AME2020. Using least-squares adjustments to all evaluated and accepted experimental data, described in Part I, we derived tables with numerical values and graphs which supersede those given in AME2016. The first table presents the recommended atomic mass values and their uncertainties. It is followed by a table of the influences of data on primary nuclides, a table of various reaction and decay energies, and finally, a series of graphs of separation and decay energies. The last section of this paper provides all input data references that were used in the AME2020 and the NUBASE2020 evaluations.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 030003

Confinement and the global SU(3) color symmetry *

Ying Chen

<jats:title>Abstract</jats:title> <jats:p>The global <jats:inline-formula> <jats:tex-math><?CDATA $ SU(3) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> color symmetry and its physical consequences are discussed. The Nöther current is actually governed by the conserved matter current of color charges if the color field generated by this charge is properly polarized. The color field strength of a charge can have a uniform part due to the nontrivial QCD vacuum field and the nonzero gluon condensate, which implies that the self-energy of a system with a net color charge is infinite and, therefore, cannot exist as a free state. This is precisely what color confinement means. Accordingly, the Cornell type potential with the feature of Casimir scaling is derived for a color singlet system composed of a static color charge and an anti-charge. The uniform color field also implies that a hadron has a minimal size and minimal energy. Furthermore, the global <jats:inline-formula> <jats:tex-math><?CDATA $ SU(3) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> color symmetry requires that the minimal irreducible color singlet systems can only be <jats:inline-formula> <jats:tex-math><?CDATA $ q\bar{q} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ qqq $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041001_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ gg $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041001_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ ggg $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041001_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ q\bar{q}g $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041001_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ qqqg $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041001_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{q}\bar{q}\bar{q}g $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041001_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, etc., therefore a multi-quark system can only exist as a molecular configuration if there are no other binding mechanisms. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 041001

Exotic ΩΩ dibaryon states in a molecular picture *

Xiao-Hui Chen; Qi-Nan Wang; Wei Chen; Hua-Xing Chen

<jats:title>Abstract</jats:title> <jats:p>We investigate the exotic <jats:inline-formula> <jats:tex-math><?CDATA $\Omega\Omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041002_M1.jpg" xlink:type="simple" /> </jats:inline-formula> dibaryon states with <jats:inline-formula> <jats:tex-math><?CDATA $J^P=0^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041002_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $2^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041002_M3.jpg" xlink:type="simple" /> </jats:inline-formula> in a molecular picture. We construct a tensor <jats:inline-formula> <jats:tex-math><?CDATA $\Omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041002_M4.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $\Omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041002_M5.jpg" xlink:type="simple" /> </jats:inline-formula> molecular interpolating current and calculate the two-point correlation function within the method of QCD sum rules. Our calculations indicate that the masses of the scalar and tensor dibaryon states are <jats:inline-formula> <jats:tex-math><?CDATA $m_{\Omega\Omega, \, 0^+} = $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041002_Z-20210105143358.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ (3.33\pm 0.51) \,{\rm{GeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041002_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $m_{\Omega\Omega,\, 2^+}=(3.15\pm0.33)\, {\rm{GeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041002_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively, which are below the <jats:inline-formula> <jats:tex-math><?CDATA $2m_\Omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041002_M8.jpg" xlink:type="simple" /> </jats:inline-formula> threshold. Within error, these results do not negate the existence of loosely bound molecular <jats:inline-formula> <jats:tex-math><?CDATA $\Omega\Omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041002_M9.jpg" xlink:type="simple" /> </jats:inline-formula> dibaryon states. These exotic strangeness <jats:inline-formula> <jats:tex-math><?CDATA $S=-6$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041002_M10.jpg" xlink:type="simple" /> </jats:inline-formula> and doubly-charged <jats:inline-formula> <jats:tex-math><?CDATA $\Omega\Omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041002_M11.jpg" xlink:type="simple" /> </jats:inline-formula> dibaryons, if they exist, may be identified in heavy-ion collision processes in the future. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 041002

Higgsino asymmetry and direct-detection constraints of light dark matter in the NMSSM with non-universal Higgs masses *

Kun Wang; Jingya Zhu; Quanlin Jie

<jats:title>Abstract</jats:title> <jats:p>In this study, we analyze the direct-detection constraints of light dark matter in the next-to minimal supersymmetric standard model (NMSSM) with non-universal Higgs masses (NUHM); we specially focus on the correlation between higgsino asymmetry and spin-dependent (SD) cross section. We draw the following conclusions. (i) The SD cross section is proportional to the square of higgsino asymmetry in dark matter <jats:inline-formula> <jats:tex-math><?CDATA $\tilde{\chi}^0_1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041003_M1.jpg" xlink:type="simple" /> </jats:inline-formula> in the NMSSM-NUHM, and hence, it is small for highly singlino-dominated dark matter. (ii) The higgsino-mass parameter <jats:inline-formula> <jats:tex-math><?CDATA $\mu_{\rm{eff}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041003_M2.jpg" xlink:type="simple" /> </jats:inline-formula> is smaller than approximately <jats:inline-formula> <jats:tex-math><?CDATA $335\;{\rm{GeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041003_M3.jpg" xlink:type="simple" /> </jats:inline-formula> in the NMSSM-NUHM due to the current muon <jats:italic>g</jats:italic>-2 constraint, but our scenario with light dark matter can still be alive under current constraints including the direct detection of dark matter in the spin-dependent channel. (iii) With a sizeable higgsino component in the light dark matter, the higgsino asymmetry and SD cross section can also be sizeable, but dark matter relic density is always small; thus, it can escape the direct detections. (iv) Light dark matter in the <jats:inline-formula> <jats:tex-math><?CDATA $h_2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041003_M4.jpg" xlink:type="simple" /> </jats:inline-formula>- and <jats:italic>Z</jats:italic>-funnel annihilation channels with sufficient relic density can be covered by future LUX-ZEPLIN (LZ) 7-ton in SD detections. (v) The spin-independent (SI) cross section is dominated by <jats:inline-formula> <jats:tex-math><?CDATA $h_1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041003_M6.jpg" xlink:type="simple" /> </jats:inline-formula>- and <jats:inline-formula> <jats:tex-math><?CDATA $h_2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041003_M7.jpg" xlink:type="simple" /> </jats:inline-formula>-exchanging channels, which can even cancel each other in some samples, leaving an SI cross section smaller by a few orders of magnitude than that of one individual channel. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 041003

Origin of hardening in spectra of cosmic ray nuclei at a few hundred GeV using AMS-02 data *

Jia-Shu Niu

<jats:title>Abstract</jats:title> <jats:p>Many experiments have confirmed spectral hardening at a few hundred GeV in the spectra of cosmic ray (CR) nuclei. Three different origins have been proposed: primary source acceleration, propagation, and the superposition of different kinds of sources. In this work, a broken power law has been employed to fit each of the spectra of cosmic ray nuclei from AMS-02 directly, for rigidities greater than 45 GeV. The fitting results of the break rigidity and the spectral index differences less than and greater than the break rigidity show complicated relationships among different nuclear species, which cannot be reproduced naturally by a simple primary source scenario or a propagation scenario. However, with a natural and simple assumption, the superposition of different kinds of sources could have the potential to explain the fitting results successfully. Spectra of CR nuclei from a single future experiment, such as DAMPE, will provide us the opportunity to do cross checks and reveal the properties of the different kinds of sources.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 041004

Drell-Yan nuclear modification due to nuclear effects of nPDFs and initial-state parton energy loss *

Li-Hua Song; Peng-Qi Wang; Yin-Jie Zhang

<jats:title>Abstract</jats:title> <jats:p>By globally analyzing nuclear Drell-Yan data including all incident energies, the nuclear effects of nuclear parton distribution functions (nPDFs) and initial-state parton energy loss are investigated. Based on the Landau-Pomeranchuk-Migdal (LPM) regime, the calculations are carried out by means of analytic parametrizations of quenching weights derived from the Baier-Dokshitzer-Mueller-Peign <jats:inline-formula> <jats:tex-math><?CDATA $ \acute{e} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041005_M1.jpg" xlink:type="simple" /> </jats:inline-formula>-Schiff (BDMPS) formalism and using the new EPPS16 nPDFs. It is found that the results are in good agreement with the data and the role of the energy loss effect in the suppression of Drell-Yan ratios is prominent, especially for low-mass Drell-Yan measurements. The nuclear effects of nPDFs become more obvious with increasing nuclear mass number <jats:italic>A</jats:italic>, the same as the energy loss effect. By a global fit, the transport coefficient extracted is <jats:inline-formula> <jats:tex-math><?CDATA $ \hat{q} = 0.26\pm0.04 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041005_M2.jpg" xlink:type="simple" /> </jats:inline-formula> GeV<jats:sup>2</jats:sup>/fm. In addition, to avoid diminishing the QCD NLO correction to the data form of Drell-Yan ratios, separate calculations of the Compton differential cross section ratios <jats:inline-formula> <jats:tex-math><?CDATA $ R_{\rm Fe(W)/C}(x_{\rm F}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041005_M3.jpg" xlink:type="simple" /> </jats:inline-formula> at 120 GeV are performed, which provides a feasible way to better distinguish the gluon energy loss in Compton scattering. It is found that the role of the initial-state gluon energy loss in the suppression of Compton scattering ratios is not very important and disappears with the increase of <jats:inline-formula> <jats:tex-math><?CDATA $ x_{\rm F} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_041005_M4.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 041005

Relativistic Borromean states *

Ziyue Wang; Shao-Jian Jiang; Yin Jiang

<jats:title>Abstract</jats:title> <jats:p>In this work, the existence of Borromean states is discussed for bosonic and fermionic cases in both the relativistic and non-relativistic limits from the 3-momentum shell renormalization. With the linear bosonic model, we check the existence of Efimov-like states in the bosonic system. In both limits a geometric series of singularities is found in the 3-boson interaction vertex, while the energy ratio is reduced by around 70% in the relativistic limit because of the anti-particle contribution. Motivated by the quark-diquark model in heavy baryon studies, we have carefully examined the <jats:italic>p</jats:italic>-wave quark-diquark interaction and found an isolated Borromean pole at finite energy scale. This may indicate a special baryonic state of light quarks in high energy quark matter. In other cases, trivial results are obtained as expected. In the relativistic limit, for both bosonic and fermionic cases, potential Borromean states are independent of the mass, which means the results would also be valid even in the zero-mass limit. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 041006

Search for the rare decay B 0 → J/ψϕ *

R. Aaij; C. Abellán Beteta; T. Ackernley; B. Adeva; M. Adinolfi; H. Afsharnia; C.A. Aidala; S. Aiola; Z. Ajaltouni; S. Akar; J. Albrecht; F. Alessio; M. Alexander; A. Alfonso Albero; Z. Aliouche; G. Alkhazov; P. Alvarez Cartelle; S. Amato; Y. Amhis; L. An; L. Anderlini; A. Andreianov; M. Andreotti; F. Archilli; A. Artamonov; M. Artuso; K. Arzymatov; E. Aslanides; M. Atzeni; B. Audurier; S. Bachmann; M. Bachmayer; J.J. Back; S. Baker; P. Baladron Rodriguez; V. Balagura; W. Baldini; J. Baptista Leite; R.J. Barlow; S. Barsuk; W. Barter; M. Bartolini; F. Baryshnikov; J.M. Basels; G. Bassi; B. Batsukh; A. Battig; A. Bay; M. Becker; F. Bedeschi; I. Bediaga; A. Beiter; V. Belavin; S. Belin; V. Bellee; K. Belous; I. Belov; I. Belyaev; G. Bencivenni; E. Ben-Haim; A. Berezhnoy; R. Bernet; D. Berninghoff; H.C. Bernstein; C. Bertella; E. Bertholet; A. Bertolin; C. Betancourt; F. Betti; M.O. Bettler; Ia. Bezshyiko; S. Bhasin; J. Bhom; L. Bian; M.S. Bieker; S. Bifani; P. Billoir; M. Birch; F.C.R. Bishop; A. Bizzeti; M. Bjørn; M.P. Blago; T. Blake; F. Blanc; S. Blusk; D. Bobulska; J.A. Boelhauve; O. Boente Garcia; T. Boettcher; A. Boldyrev; A. Bondar; N. Bondar; S. Borghi; M. Borisyak; M. Borsato; J.T. Borsuk; S.A. Bouchiba; T.J.V. Bowcock; A. Boyer; C. Bozzi; M.J. Bradley; S. Braun; A. Brea Rodriguez; M. Brodski; J. Brodzicka; A. Brossa Gonzalo; D. Brundu; A. Buonaura; C. Burr; A. Bursche; A. Butkevich; J.S. Butter; J. Buytaert; W. Byczynski; S. Cadeddu; H. Cai; R. Calabrese; L. Calefice; L. Calero Diaz; S. Cali; R. Calladine; M. Calvi; M. Calvo Gomez; P. Camargo Magalhaes; A. Camboni; P. Campana; D.H. Campora Perez; A.F. Campoverde Quezada; S. Capelli; L. Capriotti; A. Carbone; G. Carboni; R. Cardinale; A. Cardini; I. Carli; P. Carniti; L. Carus; K. Carvalho Akiba; A. Casais Vidal; G. Casse; M. Cattaneo; G. Cavallero; S. Celani; J. Cerasoli; A.J. Chadwick; M.G. Chapman; M. Charles; Ph. Charpentier; G. Chatzikonstantinidis; C.A. Chavez Barajas; M. Chefdeville; C. Chen; S. Chen; A. Chernov; S.-G. Chitic; V. Chobanova; S. Cholak; M. Chrzaszcz; A. Chubykin; V. Chulikov; P. Ciambrone; M.F. Cicala; X. Cid Vidal; G. Ciezarek; P.E.L. Clarke; M. Clemencic; H.V. Cliff; J. Closier; J.L. Cobbledick; V. Coco; J.A.B. Coelho; J. Cogan; E. Cogneras; L. Cojocariu; P. Collins; T. Colombo; L. Congedo; A. Contu; N. Cooke; G. Coombs; G. Corti; C.M. Costa Sobral; B. Couturier; D.C. Craik; J. Crkovská; M. Cruz Torres; R. Currie; C.L. Da Silva; E. Dall’Occo; J. Dalseno; C. D’Ambrosio; A. Danilina; P. d’Argent; A. Davis; O. De Aguiar Francisco; K. De Bruyn; S. De Capua; M. De Cian; J.M. De Miranda; L. De Paula; M. De Serio; D. De Simone; P. De Simone; J.A. de Vries; C.T. Dean; W. Dean; D. Decamp; L. Del Buono; B. Delaney; H.-P. Dembinski; A. Dendek; V. Denysenko; D. Derkach; O. Deschamps; F. Desse; F. Dettori; B. Dey; P. Di Nezza; S. Didenko; L. Dieste Maronas; H. Dijkstra; V. Dobishuk; A.M. Donohoe; F. Dordei; A.C. dos Reis; L. Douglas; A. Dovbnya; A.G. Downes; K. Dreimanis; M.W. Dudek; L. Dufour; V. Duk; P. Durante; J.M. Durham; D. Dutta; M. Dziewiecki; A. Dziurda; A. Dzyuba; S. Easo; U. Egede; V. Egorychev; S. Eidelman; S. Eisenhardt; S. Ek-In; L. Eklund; S. Ely; A. Ene; E. Epple; S. Escher; J. Eschle; S. Esen; T. Evans; A. Falabella; J. Fan; Y. Fan; B. Fang; N. Farley; S. Farry; D. Fazzini; P. Fedin; M. Féo; P. Fernandez Declara; A. Fernandez Prieto; J.M. Fernandez-tenllado Arribas; F. Ferrari; L. Ferreira Lopes; F. Ferreira Rodrigues; S. Ferreres Sole; M. Ferrillo; M. Ferro-Luzzi; S. Filippov; R.A. Fini; M. Fiorini; M. Firlej; K.M. Fischer; C. Fitzpatrick; T. Fiutowski; F. Fleuret; M. Fontana; F. Fontanelli; R. Forty; V. Franco Lima; M. Franco Sevilla; M. Frank; E. Franzoso; G. Frau; C. Frei; D.A. Friday; J. Fu; Q. Fuehring; W. Funk; E. Gabriel; T. Gaintseva; A. Gallas Torreira; D. Galli; S. Gambetta; Y. Gan; M. Gandelman; P. Gandini; Y. Gao; M. Garau; L.M. Garcia Martin; P. Garcia Moreno; J. García Pardiñas; B. Garcia Plana; F.A. Garcia Rosales; L. Garrido; C. Gaspar; R.E. Geertsema; D. Gerick; L.L. Gerken; E. Gersabeck; M. Gersabeck; T. Gershon; D. Gerstel; Ph. Ghez; V. Gibson; M. Giovannetti; A. Gioventù; P. Gironella Gironell; L. Giubega; C. Giugliano; K. Gizdov; E.L. Gkougkousis; V.V. Gligorov; C. Göbel; E. Golobardes; D. Golubkov; A. Golutvin; A. Gomes; S. Gomez Fernandez; F. Goncalves Abrantes; M. Goncerz; G. Gong; P. Gorbounov; I.V. Gorelov; C. Gotti; E. Govorkova; J.P. Grabowski; R. Graciani Diaz; T. Grammatico; L.A. Granado Cardoso; E. Graugés; E. Graverini; G. Graziani; A. Grecu; L.M. Greeven; P. Griffith; L. Grillo; S. Gromov; B.R. Gruberg Cazon; C. Gu; M. Guarise; P. A. Günther; E. Gushchin; A. Guth; Y. Guz; T. Gys; T. Hadavizadeh; G. Haefeli; C. Haen; J. Haimberger; S.C. Haines; T. Halewood-leagas; P.M. Hamilton; Q. Han; X. Han; T.H. Hancock; S. Hansmann-Menzemer; N. Harnew; T. Harrison; C. Hasse; M. Hatch; J. He; M. Hecker; K. Heijhoff; K. Heinicke; A.M. Hennequin; K. Hennessy; L. Henry; J. Heuel; A. Hicheur; D. Hill; M. Hilton; S.E. Hollitt; J. Hu; J. Hu; W. Hu; W. Huang; X. Huang; W. Hulsbergen; R.J. Hunter; M. Hushchyn; D. Hutchcroft; D. Hynds; P. Ibis; M. Idzik; D. Ilin; P. Ilten; A. Inglessi; A. Ishteev; K. Ivshin; R. Jacobsson; S. Jakobsen; E. Jans; B.K. Jashal; A. Jawahery; V. Jevtic; M. Jezabek; F. Jiang; M. John; D. Johnson; C.R. Jones; T.P. Jones; B. Jost; N. Jurik; S. Kandybei; Y. Kang; M. Karacson; M. Karpov; N. Kazeev; F. Keizer; M. Kenzie; T. Ketel; B. Khanji; A. Kharisova; S. Kholodenko; K.E. Kim; T. Kirn; V.S. Kirsebom; O. Kitouni; S. Klaver; K. Klimaszewski; S. Koliiev; A. Kondybayeva; A. Konoplyannikov; P. Kopciewicz; R. Kopecna; P. Koppenburg; M. Korolev; I. Kostiuk; O. Kot; S. Kotriakhova; P. Kravchenko; L. Kravchuk; R.D. Krawczyk; M. Kreps; F. Kress; S. Kretzschmar; P. Krokovny; W. Krupa; W. Krzemien; W. Kucewicz; M. Kucharczyk; V. Kudryavtsev; H.S. Kuindersma; G.J. Kunde; T. Kvaratskheliya; D. Lacarrere; G. Lafferty; A. Lai; A. Lampis; D. Lancierini; J.J. Lane; R. Lane; G. Lanfranchi; C. Langenbruch; J. Langer; O. Lantwin; T. Latham; F. Lazzari; R. Le Gac; S.H. Lee; R. Lefèvre; A. Leflat; S. Legotin; O. Leroy; T. Lesiak; B. Leverington; H. Li; L. Li; P. Li; X. Li; Y. Li; Y. Li; Z. Li; X. Liang; T. Lin; R. Lindner; V. Lisovskyi; R. Litvinov; G. Liu; H. Liu; S. Liu; X. Liu; A. Loi; J. Lomba Castro; I. Longstaff; J.H. Lopes; G. Loustau; G.H. Lovell; Y. Lu; D. Lucchesi; S. Luchuk; M. Lucio Martinez; V. Lukashenko; Y. Luo; A. Lupato; E. Luppi; O. Lupton; A. Lusiani; X. Lyu; L. Ma; S. Maccolini; F. Machefert; F. Maciuc; V. Macko; P. Mackowiak; S. Maddrell-Mander; O. Madejczyk; L.R. Madhan Mohan; O. Maev; A. Maevskiy; D. Maisuzenko; M.W. Majewski; S. Malde; B. Malecki; A. Malinin; T. Maltsev; H. Malygina; G. Manca; G. Mancinelli; R. Manera Escalero; D. Manuzzi; D. Marangotto; J. Maratas; J.F. Marchand; U. Marconi; S. Mariani; C. Marin Benito; M. Marinangeli; P. Marino; J. Marks; P.J. Marshall; G. Martellotti; L. Martinazzoli; M. Martinelli; D. Martinez Santos; F. Martinez Vidal; A. Massafferri; M. Materok; R. Matev; A. Mathad; Z. Mathe; V. Matiunin; C. Matteuzzi; K.R. Mattioli; A. Mauri; E. Maurice; J. Mauricio; M. Mazurek; M. McCann; L. Mcconnell; T.H. Mcgrath; A. McNab; R. McNulty; J.V. Mead; B. Meadows; C. Meaux; G. Meier; N. Meinert; D. Melnychuk; S. Meloni; M. Merk; A. Merli; L. Meyer Garcia; M. Mikhasenko; D.A. Milanes; E. Millard; M. Milovanovic; M.-N. Minard; L. Minzoni; S.E. Mitchell; B. Mitreska; D.S. Mitzel; A. Mödden; R.A. Mohammed; R.D. Moise; T. Mombächer; I.A. Monroy; S. Monteil; M. Morandin; G. Morello; M.J. Morello; J. Moron; A.B. Morris; A.G. Morris; R. Mountain; H. Mu; F. Muheim; M. Mukherjee; M. Mulder; D. Müller; K. Müller; C.H. Murphy; D. Murray; P. Muzzetto; P. Naik; T. Nakada; R. Nandakumar; T. Nanut; I. Nasteva; M. Needham; I. Neri; N. Neri; S. Neubert; N. Neufeld; R. Newcombe; T.D. Nguyen; C. Nguyen-Mau; E.M. Niel; S. Nieswand; N. Nikitin; N.S. Nolte; C. Nunez; A. Oblakowska-Mucha; V. Obraztsov; D.P. O’Hanlon; R. Oldeman; M.E. Olivares; C.J.G. Onderwater; A. Ossowska; J.M. Otalora Goicochea; T. Ovsiannikova; P. Owen; A. Oyanguren; B. Pagare; P.R. Pais; T. Pajero; A. Palano; M. Palutan; Y. Pan; G. Panshin; A. Papanestis; M. Pappagallo; L.L. Pappalardo; C. Pappenheimer; W. Parker; C. Parkes; C.J. Parkinson; B. Passalacqua; G. Passaleva; A. Pastore; M. Patel; C. Patrignani; C.J. Pawley; A. Pearce; A. Pellegrino; M. Pepe Altarelli; S. Perazzini; D. Pereima; P. Perret; K. Petridis; A. Petrolini; A. Petrov; S. Petrucci; M. Petruzzo; T.T.H. Pham; A. Philippov; L. Pica; M. Piccini; B. Pietrzyk; G. Pietrzyk; M. Pili; D. Pinci; F. Pisani; A. Piucci; P.K Resmi; V. Placinta; J. Plews; M. Plo Casasus; F. Polci; M. Poli Lener; M. Poliakova; A. Poluektov; N. Polukhina; I. Polyakov; E. Polycarpo; G.J. Pomery; S. Ponce; D. Popov; S. Popov; S. Poslavskii; K. Prasanth; L. Promberger; C. Prouve; V. Pugatch; H. Pullen; G. Punzi; W. Qian; J. Qin; R. Quagliani; B. Quintana; N.V. Raab; R.I. Rabadan Trejo; B. Rachwal; J.H. Rademacker; M. Rama; M. Ramos Pernas; M.S. Rangel; F. Ratnikov; G. Raven; M. Reboud; F. Redi; F. Reiss; C. Remon Alepuz; Z. Ren; V. Renaudin; R. Ribatti; S. Ricciardi; D.S. Richards; K. Rinnert; P. Robbe; A. Robert; G. Robertson; A.B. Rodrigues; E. Rodrigues; J.A. Rodriguez Lopez; A. Rollings; P. Roloff; V. Romanovskiy; M. Romero Lamas; A. Romero Vidal; J.D. Roth; M. Rotondo; M.S. Rudolph; T. Ruf; J. Ruiz Vidal; A. Ryzhikov; J. Ryzka; J.J. Saborido Silva; N. Sagidova; N. Sahoo; B. Saitta; D. Sanchez Gonzalo; C. Sanchez Gras; R. Santacesaria; C. Santamarina Rios; M. Santimaria; E. Santovetti; D. Saranin; G. Sarpis; M. Sarpis; A. Sarti; C. Satriano; A. Satta; M. Saur; D. Savrina; H. Sazak; L.G. Scantlebury Smead; S. Schael; M. Schellenberg; M. Schiller; H. Schindler; M. Schmelling; T. Schmelzer; B. Schmidt; O. Schneider; A. Schopper; M. Schubiger; S. Schulte; M.H. Schune; R. Schwemmer; B. Sciascia; A. Sciubba; S. Sellam; A. Semennikov; M. Senghi Soares; A. Sergi; N. Serra; L. Sestini; A. Seuthe; P. Seyfert; D.M. Shangase; M. Shapkin; I. Shchemerov; L. Shchutska; T. Shears; L. Shekhtman; Z. Shen; V. Shevchenko; E.B. Shields; E. Shmanin; J.D. Shupperd; B.G. Siddi; R. Silva Coutinho; G. Simi; S. Simone; I. Skiba; N. Skidmore; T. Skwarnicki; M.W. Slater; J.C. Smallwood; J.G. Smeaton; A. Smetkina; E. Smith; M. Smith; A. Snoch; M. Soares; L. Soares Lavra; M.D. Sokoloff; F.J.P. Soler; A. Solovev; I. Solovyev; F.L. Souza De Almeida; B. Souza De Paula; B. Spaan; E. Spadaro Norella; P. Spradlin; F. Stagni; M. Stahl; S. Stahl; P. Stefko; O. Steinkamp; S. Stemmle; O. Stenyakin; H. Stevens; S. Stone; M.E. Stramaglia; M. Straticiuc; D. Strekalina; S. Strokov; F. Suljik; J. Sun; L. Sun; Y. Sun; P. Svihra; P.N. Swallow; K. Swientek; A. Szabelski; T. Szumlak; M. Szymanski; S. Taneja; F. Teubert; E. Thomas; K.A. Thomson; M.J. Tilley; V. Tisserand; S. T’Jampens; M. Tobin; S. Tolk; L. Tomassetti; D. Torres Machado; D.Y. Tou; M. Traill; M.T. Tran; E. Trifonova; C. Trippl; G. Tuci; A. Tully; N. Tuning; A. Ukleja; D.J. Unverzagt; A. Usachov; A. Ustyuzhanin; U. Uwer; A. Vagner; V. Vagnoni; A. Valassi; G. Valenti; N. Valls Canudas; M. van Beuzekom; M. Van Dijk; H. Van Hecke; E. van Herwijnen; C.B. Van Hulse; M. van Veghel; R. Vazquez Gomez; P. Vazquez Regueiro; C. Vázquez Sierra; S. Vecchi; J.J. Velthuis; M. Veltri; A. Venkateswaran; M. Veronesi; M. Vesterinen; D. Vieira; M. Vieites Diaz; H. Viemann; X. Vilasis-Cardona; E. Vilella Figueras; P. Vincent; G. Vitali; A. Vollhardt; D. Vom Bruch; A. Vorobyev; V. Vorobyev; N. Voropaev; R. Waldi; J. Walsh; C. Wang; J. Wang; J. Wang; J. Wang; J. Wang; M. Wang; R. Wang; Y. Wang; Z. Wang; H.M. Wark; N.K. Watson; S.G. Weber; D. Websdale; C. Weisser; B.D.C. Westhenry; D.J. White; M. Whitehead; D. Wiedner; G. Wilkinson; M. Wilkinson; I. Williams; M. Williams; M.R.J. Williams; F.F. Wilson; W. Wislicki; M. Witek; L. Witola; G. Wormser; S.A. Wotton; H. Wu; K. Wyllie; Z. Xiang; D. Xiao; Y. Xie; A. Xu; J. Xu; L. Xu; M. Xu; Q. Xu; Z. Xu; Z. Xu; D. Yang; Y. Yang; Z. Yang; Z. Yang; Y. Yao; L.E. Yeomans; H. Yin; J. Yu; X. Yuan; O. Yushchenko; E. Zaffaroni; K.A. Zarebski; M. Zavertyaev; M. Zdybal; O. Zenaiev; M. Zeng; D. Zhang; L. Zhang; S. Zhang; Y. Zhang; Y. Zhang; A. Zhelezov; Y. Zheng; X. Zhou; Y. Zhou; X. Zhu; V. Zhukov; J.B. Zonneveld; S. Zucchelli; D. Zuliani; G. Zunica; (LHCb Collaboration)

<jats:title>Abstract</jats:title> <jats:p>A search for the rare decay <jats:inline-formula> <jats:tex-math><?CDATA $ B^0\to J/ \psi\phi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> is performed using <jats:inline-formula> <jats:tex-math><?CDATA $ pp$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb<jats:sup>−1</jats:sup>. No significant signal of the decay is observed and an upper limit of <jats:inline-formula> <jats:tex-math><?CDATA $ 1.1 \times 10^{-7}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_4_043001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> at 90% confidence level is set on the branching fraction. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 043001