Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Diffuseness effect and radial basis function network for optimizing α decay calculations *

Na-Na Ma; Xiao-Jun Bao; Hong-Fei Zhang

<jats:title>Abstract</jats:title> <jats:p>A radial basis function network (RBFN) approach is adopted for the first time to optimize the calculation of <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024105_M1.jpg" xlink:type="simple" /> </jats:inline-formula> decay half-life in the generalized liquid drop model (GLDM), while concurrently incorporating the surface diffuseness effect. The calculations presented herein agree closely with the experimental half-lives for 68 superheavy nuclei (SHN), achieving a remarkable reduction of 40% in the root-mean-square (rms) deviations of half-lives. Furthermore, using the RBFN method, the half-lives for four SHN isotopes, <jats:sup>252-288</jats:sup>Rf, <jats:sup>272-310</jats:sup>Fl, <jats:sup>286-316</jats:sup>119, and <jats:sup>292-318</jats:sup>120, are predicted using the improved GLDM with the diffuseness correction and the decay energies from WS4 and FRDM as inputs. Therefore, we conclude that the diffuseness effect should be embodied in the proximity energy. Moreover, increased application of neural network methods in nuclear reaction studies is encouraged. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 024105

Analyses of multi-pion Bose-Einstein correlations for granular sources with coherent pion-emission droplets *

Ghulam Bary; Wei-Ning Zhang; Peng Ru; Jing Yang

<jats:title>Abstract</jats:title> <jats:p>The ALICE Collaboration measured three- and four-pion Bose-Einstein correlations (BECs) for Pb-Pb collisions at the Large Hadron Collider (LHC). It is speculated that the observed significant suppression of multi-pion BECs is owing to a considerable degree of coherent pion emission in these collisions. Here, we study multi-pion BEC functions for granular sources with coherent pion-emission droplets. We find that the intercepts of the multi-pion correlation functions at the relative momenta near zero are sensitive to the number of droplets in the granular source. They decrease with the droplet number. The three-pion correlation functions for evolving granular sources with momentum-dependent partially coherent pion-emission droplets basically agree with the experimental data for Pb-Pb collisions at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s_{NN}}=2.76$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024106_M1.jpg" xlink:type="simple" /> </jats:inline-formula> TeV at the LHC. However, the model results for the four-pion correlation function are inconsistent with the experimental data. Investigations into normalized multi-pion correlation functions of granular sources suggest an interesting enhancement of the normalized four-pion correlation function in the moderate relative-momentum region. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 024106

Shell corrections with finite temperature covariant density functional theory *

Wei Zhang; Wan-Li Lv; Ting-Ting Sun

<jats:title>Abstract</jats:title> <jats:p>The temperature dependence of the shell corrections to the energy <jats:inline-formula> <jats:tex-math><?CDATA $\delta E_{\rm{shell}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, entropy <jats:inline-formula> <jats:tex-math><?CDATA $T \delta S_{\rm{shell}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, and free energy <jats:inline-formula> <jats:tex-math><?CDATA $\delta F_{\rm{shell}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M3.jpg" xlink:type="simple" /> </jats:inline-formula> is studied by employing the covariant density functional theory for closed-shell nuclei. Taking <jats:inline-formula> <jats:tex-math><?CDATA $^{144}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M4.jpg" xlink:type="simple" /> </jats:inline-formula>Sm as an example, studies have shown that, unlike the widely-used exponential dependence <jats:inline-formula> <jats:tex-math><?CDATA $\exp(-E^*/E_d)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\delta E_{\rm{shell}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M6.jpg" xlink:type="simple" /> </jats:inline-formula> exhibits a non-monotonous behavior, i.e., first decreasing 20% approaching a temperature of <jats:inline-formula> <jats:tex-math><?CDATA $0.8$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M7.jpg" xlink:type="simple" /> </jats:inline-formula> MeV, and then fading away exponentially. Shell corrections to both free energy <jats:inline-formula> <jats:tex-math><?CDATA $\delta F_{\rm{shell}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M8.jpg" xlink:type="simple" /> </jats:inline-formula> and entropy <jats:inline-formula> <jats:tex-math><?CDATA $T \delta S_{\rm{shell}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M9.jpg" xlink:type="simple" /> </jats:inline-formula> can be approximated well using the Bohr-Mottelson forms <jats:inline-formula> <jats:tex-math><?CDATA $\tau/\sinh(\tau)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M10.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $[\tau \coth(\tau)-1]/\sinh(\tau)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively, in which <jats:inline-formula> <jats:tex-math><?CDATA $\tau\propto T$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M12.jpg" xlink:type="simple" /> </jats:inline-formula>. Further studies on the shell corrections in other closed-shell nuclei, <jats:inline-formula> <jats:tex-math><?CDATA $^{100}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M13.jpg" xlink:type="simple" /> </jats:inline-formula>Sn and <jats:inline-formula> <jats:tex-math><?CDATA $^{208}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024107_M14.jpg" xlink:type="simple" /> </jats:inline-formula>Pb, are conducted, and the same temperature dependencies are obtained. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 024107

New Geiger-Nuttall law for two-proton radioactivity *

Hong-Ming Liu; You-Tian Zou; Xiao Pan; Jiu-Long Chen; Biao He; Xiao-Hua Li

<jats:title>Abstract</jats:title> <jats:p>In the present work, a two-parameter empirical formula is proposed, based on the Geiger-Nuttall law, to study two-proton ( <jats:inline-formula> <jats:tex-math><?CDATA $ 2p $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024108_M1.jpg" xlink:type="simple" /> </jats:inline-formula>) radioactivity. Using this formula, the calculated <jats:inline-formula> <jats:tex-math><?CDATA $ 2p $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024108_M2.jpg" xlink:type="simple" /> </jats:inline-formula> radioactivity half-lives are in good agreement with the experimental data as well as with calculated results obtained by Goncalves <jats:italic>et al</jats:italic>. [<jats:italic>Phys. Lett. B</jats:italic> <jats:bold>774</jats:bold>, 14 (2017)] using the effective liquid drop model (ELDM), Sreeja <jats:italic>et al</jats:italic>. [<jats:italic>Eur. Phys. J. A</jats:italic> <jats:bold>55</jats:bold>, 33 (2019)] using a four-parameter empirical formula, and Cui <jats:italic>et al</jats:italic>. [<jats:italic>Phys. Rev. C</jats:italic> <jats:bold>101</jats:bold>: 014301 (2020)] using a generalized liquid drop model (GLDM). In addition, this two-parameter empirical formula is extended to predict the half-lives of 22 possible <jats:inline-formula> <jats:tex-math><?CDATA $ 2p $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024108_M4.jpg" xlink:type="simple" /> </jats:inline-formula> radioactivity candidates with <jats:inline-formula> <jats:tex-math><?CDATA $ 2p $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024108_M5.jpg" xlink:type="simple" /> </jats:inline-formula> radioactivity released energy <jats:inline-formula> <jats:tex-math><?CDATA $ Q_{2p} \gt, 0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024108_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, obtained from the latest evaluated atomic mass table AME2016. The predicted results are highly consistent with those obtained using other theoretical models such as the ELDM, GLDM and four-parameter empirical formula. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 024108

Multi-parameter global calculations of fission fragments using a simplified two-dimensional scission-point model *

Kang Wei; Hong-Fei Zhang; Zhi-Xuan He; Xing-Yu Wang; Shu-Qin Guo; Bi-Tao Hu

<jats:title>Abstract</jats:title> <jats:p>Exploiting the concept of the dinuclear system, the interaction potential energy of two fragments that are quite close to each other is analyzed. A semi-classical method is used to calculate fission fragment yields using a simplified two-dimensional scission-point model. By considering the tip-to-tip orientation at the scission point of the fission process, we investigate the mass, charge, and kinetic-energy distributions of the fission fragments, for excitation energies in the 0-20 MeV range. Our results show that the fission fragment distributions are reproduced quite well, including the recent experimental results for the isotone chain [D Ramos <jats:italic>et al</jats:italic>. <jats:italic>Phys. Rev.</jats:italic> C <jats:bold>97</jats:bold>, 054612 (2018)]. Thus, the simplified model is useful for multi-parameter global measurements of fission products. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 024109

Kinetic energy distribution for neutron-induced fission of neptunium isotopes

P Mehdipour Kaldiani

<jats:title>Abstract</jats:title> <jats:p>The mean total kinetic energy as a function of fission fragments, the &lt;TKE&gt; distribution, is presented for neutron-induced fission of <jats:inline-formula> <jats:tex-math><?CDATA $ ^{235-239}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024110_M1.jpg" xlink:type="simple" /> </jats:inline-formula>Np using the scission point model. The calculated results of &lt;TKE&gt; for neutron-induced fission of <jats:inline-formula> <jats:tex-math><?CDATA $ ^{237,238}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_024110_M2.jpg" xlink:type="simple" /> </jats:inline-formula>Np are compared with the available experimental data to obtain the deformation parameters in the scission point model. The deformation parameters of fission fragments are discussed at the scission point. The calculated results are also compared with the results from other methods and with experimental data. The behavior of the &lt;TKE&gt; distribution is then studied for the neutron-induced fission of actinides. This indicates that the &lt;TKE&gt; values for neutron-induced fission of actinides with odd mass numbers are greater than for those with even mass numbers. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 024110

Muon flux measurement at China Jinping Underground Laboratory *

Zi-yi Guo; Lars Bathe-Peters; Shao-min Chen; Mourad Chouaki; Wei Dou; Lei Guo; Ghulam Hussain; Jin-jing Li; Qian Liu; Guang Luo; Wen-tai Luo; Ming Qi; Wen-hui Shao; Jian Tang; Lin-yan Wan; Zhe Wang; Ben-da Xu; Tong Xu; Wei-ran Xu; Yu-zi Yang; Minfang Yeh; Lin Zhao

<jats:title>Abstract</jats:title> <jats:p>China Jinping Underground Laboratory (CJPL) is ideal for studying solar, geo-, and supernova neutrinos. A precise measurement of the cosmic-ray background is essential in proceeding with R&amp;D research for these MeV-scale neutrino experiments. Using a 1-ton prototype detector for the Jinping Neutrino Experiment (JNE), we detected 264 high-energy muon events from a 645.2-day dataset from the first phase of CJPL (CJPL-I), reconstructed their directions, and measured the cosmic-ray muon flux to be <jats:inline-formula> <jats:tex-math><?CDATA $(3.53\pm0.22_{\rm{stat.}}\pm0.07_{\rm{sys.}})\times10^{-10}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> cm <jats:inline-formula> <jats:tex-math><?CDATA $^{-2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025001_M2.jpg" xlink:type="simple" /> </jats:inline-formula>s <jats:inline-formula> <jats:tex-math><?CDATA $^{-1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. The observed angular distributions indicate the leakage of cosmic-ray muon background and agree with simulation data accounting for Jinping mountain's terrain. A survey of muon fluxes at different laboratory locations, considering both those situated under mountains and those down mine shafts, indicates that the flux at the former is generally a factor of <jats:inline-formula> <jats:tex-math><?CDATA $(4\pm2)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> larger than at the latter, with the same vertical overburden. This study provides a convenient back-of-the-envelope estimation for the muon flux of an underground experiment. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 025001

Observation of the Crab Nebula with LHAASO-KM2A − a performance study *

F. Aharonian; Q. An; 克古 Axikegu; L. X. Bai; Y. X. Bai; Y. W. Bao; D. Bastieri; X. J. Bi; Y. J. Bi; H. Cai; J. T. Cai; Z. Cao; Z. Cao; J. Chang; J. F. Chang; X. C. Chang; B. M. Chen; J. Chen; L. Chen; L. Chen; L. Chen; M. J. Chen; M. L. Chen; Q. H. Chen; S. H. Chen; S. Z. Chen; T. L. Chen; X. L. Chen; Y. Chen; N. Cheng; Y. D. Cheng; S. W. Cui; X. H. Cui; Y. D. Cui; B. Z. Dai; H. L. Dai; Z. G. Dai; 罗布 Danzengluobu; D. della Volpe; B. D'Ettorre Piazzoli; X. J. Dong; J. H. Fan; Y. Z. Fan; Z. X. Fan; J. Fang; K. Fang; C. F. Feng; L. Feng; S. H. Feng; Y. L. Feng; B. Gao; C. D. Gao; Q. Gao; W. Gao; M. M. Ge; L. S. Geng; G. H. Gong; Q. B. Gou; M. H. Gu; J. G. Guo; X. L. Guo; Y. Q. Guo; Y. Y. Guo; Y. A. Han; H. H. He; H. N. He; J. C. He; S. L. He; X. B. He; Y. He; M. Heller; Y. K. Hor; C. Hou; X. Hou; H. B. Hu; S. Hu; S. C. Hu; X. J. Hu; D. H. Huang; Q. L. Huang; W. H. Huang; X. T. Huang; Z. C. Huang; F. Ji; X. L. Ji; H. Y. Jia; K. Jiang; Z. J. Jiang; C. Jin; D. Kuleshov; K. Levochkin; B. B. Li; C. Li; C. Li; F. Li; H. B. Li; H. C. Li; H. Y. Li; J. Li; K. Li; W. L. Li; X. Li; X. Li; X. R. Li; Y. Li; Y. Z. Li; Z. Li; Z. Li; E. W. Liang; Y. F. Liang; S. J. Lin; B. Liu; C. Liu; D. Liu; H. Liu; H. D. Liu; J. Liu; J. L. Liu; J. S. Liu; J. Y. Liu; M. Y. Liu; R. Y. Liu; S. M. Liu; W. Liu; Y. N. Liu; Z. X. Liu; W. J. Long; R. Lu; H. K. Lv; B. Q. Ma; L. L. Ma; X. H. Ma; J. R. Mao; A. Masood; W. Mitthumsiri; T. Montaruli; Y. C. Nan; B. Y. Pang; P. Pattarakijwanich; Z. Y. Pei; M. Y. Qi; D. Ruffolo; V. Rulev; A. Sáiz; L. Shao; O. Shchegolev; X. D. Sheng; J. R. Shi; H. C. Song; Yu. V. Stenkin; V. Stepanov; Q. N. Sun; X. N. Sun; Z. B. Sun; P. H. T. Tam; Z. B. Tang; W. W. Tian; B. D. Wang; C. Wang; H. Wang; H. G. Wang; J. C. Wang; J. S. Wang; L. P. Wang; L. Y. Wang; R. N. Wang; W. Wang; W. Wang; X. G. Wang; X. J. Wang; X. Y. Wang; Y. D. Wang; Y. J. Wang; Y. P. Wang; Z. Wang; Z. Wang; Z. H. Wang; Z. X. Wang; D. M. Wei; J. J. Wei; Y. J. Wei; T. Wen; C. Y. Wu; H. R. Wu; S. Wu; W. X. Wu; X. F. Wu; S. Q. Xi; J. Xia; J. J. Xia; G. M. Xiang; G. Xiao; H. B. Xiao; G. G. Xin; Y. L. Xin; Y. Xing; D. L. Xu; R. X. Xu; L. Xue; D. H. Yan; C. W. Yang; F. F. Yang; J. Y. Yang; L. L. Yang; M. J. Yang; R. Z. Yang; S. B. Yang; Y. H. Yao; Z. G. Yao; Y. M. Ye; L. Q. Yin; N. Yin; X. H. You; Z. Y. You; Y. H. Yu; Q. Yuan; H. D. Zeng; T. X. Zeng; W. Zeng; Z. K. Zeng; M. Zha; X. X. Zhai; B. B. Zhang; H. M. Zhang; H. Y. Zhang; J. L. Zhang; J. W. Zhang; L. Zhang; L. Zhang; L. X. Zhang; P. F. Zhang; P. P. Zhang; R. Zhang; S. R. Zhang; S. S. Zhang; X. Zhang; X. P. Zhang; Y. Zhang; Y. Zhang; Y. F. Zhang; Y. L. Zhang; B. Zhao; J. Zhao; L. Zhao; L. Z. Zhao; S. P. Zhao; F. Zheng; Y. Zheng; B. Zhou; H. Zhou; J. N. Zhou; P. Zhou; R. Zhou; X. X. Zhou; C. G. Zhu; F. R. Zhu; H. Zhu; K. J. Zhu; X. Zuo

<jats:title>Abstract</jats:title> <jats:p>A sub-array of the Large High Altitude Air Shower Observatory (LHAASO), KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV. Even though the detector construction is still underway, half of the KM2A array has been operating stably since the end of 2019. In this paper, we present the KM2A data analysis pipeline and the first observation of the Crab Nebula, a standard candle in very high energy γ-ray astronomy. We detect γ-ray signals from the Crab Nebula in both energy ranges of 10 <jats:inline-formula> <jats:tex-math><?CDATA $ - $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M1.jpg" xlink:type="simple" /> </jats:inline-formula>100 TeV and <jats:inline-formula> <jats:tex-math><?CDATA $ \gt $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M2.jpg" xlink:type="simple" /> </jats:inline-formula>100 TeV with high significance, by analyzing the KM2A data of 136 live days between December 2019 and May 2020. With the observations, we test the detector performance, including angular resolution, pointing accuracy and cosmic-ray background rejection power. The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function d<jats:italic>N</jats:italic>/d<jats:italic>E</jats:italic> = (1.13 <jats:inline-formula> <jats:tex-math><?CDATA $ \pm $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M3.jpg" xlink:type="simple" /> </jats:inline-formula>0.05 <jats:inline-formula> <jats:tex-math><?CDATA $ _{\rm stat} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M4.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ \pm $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M5.jpg" xlink:type="simple" /> </jats:inline-formula>0.08 <jats:inline-formula> <jats:tex-math><?CDATA $ _{\rm sys} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M6.jpg" xlink:type="simple" /> </jats:inline-formula>) <jats:inline-formula> <jats:tex-math><?CDATA $ \times $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M7.jpg" xlink:type="simple" /> </jats:inline-formula>10 <jats:inline-formula> <jats:tex-math><?CDATA $ ^{-14} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M8.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ \cdot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M9.jpg" xlink:type="simple" /> </jats:inline-formula>(<jats:italic>E</jats:italic>/20 TeV) <jats:inline-formula> <jats:tex-math><?CDATA $ ^{-3.09\pm0.06_{\rm stat}\pm0.02_{\rm sys}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M10.jpg" xlink:type="simple" /> </jats:inline-formula> cm <jats:inline-formula> <jats:tex-math><?CDATA $ ^{-2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M11.jpg" xlink:type="simple" /> </jats:inline-formula> s <jats:inline-formula> <jats:tex-math><?CDATA $ ^{-1} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M12.jpg" xlink:type="simple" /> </jats:inline-formula> TeV <jats:inline-formula> <jats:tex-math><?CDATA $ ^{-1} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_025002_M13.jpg" xlink:type="simple" /> </jats:inline-formula>. It is consistent with previous measurements by other experiments. This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena, such as cosmic PeVatrons, might be discovered. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 025002

Neutron star cooling and GW170817 constraint within quark-meson coupling models *

Odilon Lourenço; César H. Lenzi; Mariana Dutra; Tobias Frederico; M. Bhuyan; Rodrigo Negreiros; César V. Flores; Guilherme Grams; Débora P. Menezes

<jats:title>Abstract</jats:title> <jats:p>In the present work, we used five different versions of the quark-meson coupling (QMC) model to compute astrophysical quantities related to the GW170817 event and the neutron star cooling process. Two of the models are based on the original bag potential structure and three versions consider a harmonic oscillator potential to confine quarks. The bag-like models also incorporate the pasta phase used to describe the inner crust of neutron stars. With a simple method studied in the present work, we show that the pasta phase does not play a significant role. Moreover, the QMC model that satisfies the GW170817 constraints with the lowest slope of the symmetry energy exhibits a cooling profile compatible with observational data.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 025101

Instability of AdS black holes with lattices *

Yi Ling; Meng-He Wu

<jats:title>Abstract</jats:title> <jats:p>Anti-de Sitter (AdS) black holes with lattices are essential for optical conductivity studies in the holographic approach. We investigate the instability of these black holes that can result in the holographic description of charge density waves. In the presence of homogeneous axion fields, we show that the instability of AdS-Reissner-Nordström (AdS-RN) black holes is always suppressed. However, in the presence of Q-lattices, we find that the unstable region becomes the smallest in the vicinity of the critical region for the metal/insulator phase transition. This novel phenomenon is reminiscent of the behavior of the holographic entanglement entropy during quantum phase transitions.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 025102