Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Feasibility and physics potential of detecting 8B solar neutrinos at JUNO *
Angel Abusleme; Thomas Adam; Shakeel Ahmad; Sebastiano Aiello; Muhammad Akram; Nawab Ali; Fengpeng An; Guangpeng An; Qi An; Giuseppe Andronico; Nikolay Anfimov; Vito Antonelli; Tatiana Antoshkina; Burin Asavapibhop; João Pedro Athayde Marcondes de André; Didier Auguste; Andrej Babic; Wander Baldini; Andrea Barresi; Eric Baussan; Marco Bellato; Antonio Bergnoli; Enrico Bernieri; David Biare; Thilo Birkenfeld; Sylvie Blin; David Blum; Simon Blyth; Anastasia Bolshakova; Mathieu Bongrand; Clément Bordereau; Dominique Breton; Augusto Brigatti; Riccardo Brugnera; Riccardo Bruno; Antonio Budano; Max Buesken; Mario Buscemi; Jose Busto; Ilya Butorov; Anatael Cabrera; Hao Cai; Xiao Cai; Yanke Cai; Zhiyan Cai; Antonio Cammi; Agustin Campeny; Chuanya Cao; Guofu Cao; Jun Cao; Rossella Caruso; Cédric Cerna; Jinfan Chang; Yun Chang; Pingping Chen; Po-An Chen; Shaomin Chen; Shenjian Chen; Xurong Chen; Yi-Wen Chen; Yixue Chen; Yu Chen; Zhang Chen; Jie Cheng; Yaping Cheng; Alexander Chepurnov; Davide Chiesa; Pietro Chimenti; Artem Chukanov; Anna Chuvashova; Gérard Claverie; Catia Clementi; Barbara Clerbaux; Selma Conforti Di Lorenzo; Daniele Corti; Salvatore Costa; Flavio Dal Corso; Christophe De La Taille; Jiawei Deng; Zhi Deng; Ziyan Deng; Wilfried Depnering; Marco Diaz; Xuefeng Ding; Yayun Ding; Bayu Dirgantara; Sergey Dmitrievsky; Tadeas Dohnal; Georgy Donchenko; Jianmeng Dong; Damien Dornic; Evgeny Doroshkevich; Marcos Dracos; Frédéric Druillole; Shuxian Du; Stefano Dusini; Martin Dvorak; Timo Enqvist; Heike Enzmann; Andrea Fabbri; Lukas Fajt; Donghua Fan; Lei Fan; Can Fang; Jian Fang; Marco Fargetta; Anna Fatkina; Dmitry Fedoseev; Vladko Fekete; Li-Cheng Feng; Qichun Feng; Richard Ford; Andrey Formozov; Amélie Fournier; Haonan Gan; Feng Gao; Alberto Garfagnini; Alexandre Göttel; Christoph Genster; Marco Giammarchi; Agnese Giaz; Nunzio Giudice; Franco Giuliani; Maxim Gonchar; Guanghua Gong; Hui Gong; Oleg Gorchakov; Yuri Gornushkin; Marco Grassi; Christian Grewing; Maxim Gromov; Vasily Gromov; Minghao Gu; Xiaofei Gu; Yu Gu; Mengyun Guan; Nunzio Guardone; Maria Gul; Cong Guo; Jingyuan Guo; Wanlei Guo; Xinheng Guo; Yuhang Guo; Paul Hackspacher; Caren Hagner; Ran Han; Yang Han; Miao He; Wei He; Tobias Heinz; Patrick Hellmuth; Yuekun Heng; Rafael Herrera; Daojin Hong; YuenKeung Hor; Shaojing Hou; Yee Hsiung; Bei-Zhen Hu; Hang Hu; Jianrun Hu; Jun Hu; Shouyang Hu; Tao Hu; Zhuojun Hu; Chunhao Huang; Guihong Huang; Hanxiong Huang; Qinhua Huang; Wenhao Huang; Xingtao Huang; Yongbo Huang; Jiaqi Hui; Wenju Huo; Cédric Huss; Safeer Hussain; Antonio Insolia; Ara Ioannisian; Daniel Ioannisyan; Roberto Isocrate; Kuo-Lun Jen; Xiaolu Ji; Xingzhao Ji; Huihui Jia; Junji Jia; Siyu Jian; Di Jiang; Xiaoshan Jiang; Ruyi Jin; Xiaoping Jing; Cécile Jollet; Jari Joutsenvaara; Sirichok Jungthawan; Leonidas Kalousis; Philipp Kampmann; Li Kang; Michael Karagounis; Narine Kazarian; Amir Khan; Waseem Khan; Khanchai Khosonthongkee; Patrick Kinz; Denis Korablev; Konstantin Kouzakov; Alexey Krasnoperov; Svetlana Krokhaleva; Zinovy Krumshteyn; Andre Kruth; Nikolay Kutovskiy; Pasi Kuusiniemi; Tobias Lachenmaier; Cecilia Landini; Sébastien Leblanc; Frederic Lefevre; Liping Lei; Ruiting Lei; Rupert Leitner; Jason Leung; Demin Li; Fei Li; Fule Li; Haitao Li; Huiling Li; Jiaqi Li; Jin Li; Kaijie Li; Mengzhao Li; Nan Li; Nan Li; Qingjiang Li; Ruhui Li; Shanfeng Li; Shuaijie Li; Tao Li; Weidong Li; Weiguo Li; Xiaomei Li; Xiaonan Li; Xinglong Li; Yi Li; Yufeng Li; Zhibing Li; Ziyuan Li; Hao Liang; Hao Liang; Jingjing Liang; Jiajun Liao; Daniel Liebau; Ayut Limphirat; Sukit Limpijumnong; Guey-Lin Lin; Shengxin Lin; Tao Lin; Jiajie Ling; Ivano Lippi; Fang Liu; Haidong Liu; Hongbang Liu; Hongjuan Liu; Hongtao Liu; Hu Liu; Hui Liu; Jianglai Liu; Jinchang Liu; Min Liu; Qian Liu; Qin Liu; Runxuan Liu; Shuangyu Liu; Shubin Liu; Shulin Liu; Xiaowei Liu; Yan Liu; Alexey Lokhov; Paolo Lombardi; Claudio Lombardo; Kai Loo; Chuan Lu; Haoqi Lu; Jingbin Lu; Junguang Lu; Shuxiang Lu; Xiaoxu Lu; Bayarto Lubsandorzhiev; Sultim Lubsandorzhiev; Livia Ludhova; Fengjiao Luo; Guang Luo; Pengwei Luo; Shu Luo; Wuming Luo; Vladimir Lyashuk; Qiumei Ma; Si Ma; Xiaoyan Ma; Xubo Ma; Jihane Maalmi; Yury Malyshkin; Fabio Mantovani; Francesco Manzali; Xin Mao; Yajun Mao; Stefano M. Mari; Filippo Marini; Sadia Marium; Cristina Martellini; Gisele Martin-Chassard; Agnese Martini; Davit Mayilyan; Axel Müller; Ints Mednieks; Yue Meng; Anselmo Meregaglia; Emanuela Meroni; David Meyhöfer; Mauro Mezzetto; Jonathan Miller; Lino Miramonti; Salvatore Monforte; Paolo Montini; Michele Montuschi; Nikolay Morozov; Pavithra Muralidharan; Massimiliano Nastasi; Dmitry V. Naumov; Elena Naumova; Igor Nemchenok; Alexey Nikolaev; Feipeng Ning; Zhe Ning; Hiroshi Nunokawa; Lothar Oberauer; Juan Pedro Ochoa-Ricoux; Alexander Olshevskiy; Domizia Orestano; Fausto Ortica; Hsiao-Ru Pan; Alessandro Paoloni; Nina Parkalian; Sergio Parmeggiano; Teerapat Payupol; Yatian Pei; Nicomede Pelliccia; Anguo Peng; Haiping Peng; Frédéric Perrot; Pierre-Alexandre Petitjean; Fabrizio Petrucci; Luis Felipe Piñeres Rico; Oliver Pilarczyk; Artyom Popov; Pascal Poussot; Wathan Pratumwan; Ezio Previtali; Fazhi Qi; Ming Qi; Sen Qian; Xiaohui Qian; Hao Qiao; Zhonghua Qin; Shoukang Qiu; Muhammad Rajput; Gioacchino Ranucci; Neill Raper; Alessandra Re; Henning Rebber; Abdel Rebii; Bin Ren; Jie Ren; Taras Rezinko; Barbara Ricci; Markus Robens; Mathieu Roche; Narongkiat Rodphai; Aldo Romani; Bedřich Roskovec; Christian Roth; Xiangdong Ruan; Xichao Ruan; Saroj Rujirawat; Arseniy Rybnikov; Andrey Sadovsky; Paolo Saggese; Giuseppe Salamanna; Simone Sanfilippo; Anut Sangka; Nuanwan Sanguansak; Utane Sawangwit; Julia Sawatzki; Fatma Sawy; Michaela Schever; Jacky Schuler; Cédric Schwab; Konstantin Schweizer; Dmitry Selivanov; Alexandr Selyunin; Andrea Serafini; Giulio Settanta; Mariangela Settimo; Muhammad Shahzad; Vladislav Sharov; Gang Shi; Jingyan Shi; Yongjiu Shi; Vitaly Shutov; Andrey Sidorenkov; Fedor Šimkovic; Chiara Sirignano; Jaruchit Siripak; Monica Sisti; Maciej Slupecki; Mikhail Smirnov; Oleg Smirnov; Thiago Sogo-Bezerra; Julanan Songwadhana; Boonrucksar Soonthornthum; Albert Sotnikov; Ondrej Sramek; Warintorn Sreethawong; Achim Stahl; Luca Stanco; Konstantin Stankevich; Dušan Štefánik; Hans Steiger; Jochen Steinmann; Tobias Sterr; Matthias Raphael Stock; Virginia Strati; Alexander Studenikin; Gongxing Sun; Shifeng Sun; Xilei Sun; Yongjie Sun; Yongzhao Sun; Narumon Suwonjandee; Michal Szelezniak; Jian Tang; Qiang Tang; Quan Tang; Xiao Tang; Alexander Tietzsch; Igor Tkachev; Tomas Tmej; Konstantin Treskov; Andrea Triossi; Giancarlo Troni; Wladyslaw Trzaska; Cristina Tuve; Stefan van Waasen; Johannes van den Boom; Guillaume Vanroyen; Nikolaos Vassilopoulos; Vadim Vedin; Giuseppe Verde; Maxim Vialkov; Benoit Viaud; Cristina Volpe; Vit Vorobel; Lucia Votano; Pablo Walker; Caishen Wang; Chung-Hsiang Wang; En Wang; Guoli Wang; Jian Wang; Jun Wang; Kunyu Wang; Lu Wang; Meifen Wang; Meng Wang; Meng Wang; Ruiguang Wang; Siguang Wang; Wei Wang; Wei Wang; Wenshuai Wang; Xi Wang; Xiangyue Wang; Yangfu Wang; Yaoguang Wang; Yi Wang; Yi Wang; Yifang Wang; Yuanqing Wang; Yuman Wang; Zhe Wang; Zheng Wang; Zhimin Wang; Zongyi Wang; Apimook Watcharangkool; Lianghong Wei; Wei Wei; Yadong Wei; Liangjian Wen; Christopher Wiebusch; Steven Chan-Fai Wong; Bjoern Wonsak; Diru Wu; Fangliang Wu; Qun Wu; Wenjie Wu; Zhi Wu; Michael Wurm; Jacques Wurtz; Christian Wysotzki; Yufei Xi; Dongmei Xia; Yuguang Xie; Zhangquan Xie; Zhizhong Xing; Benda Xu; Donglian Xu; Fanrong Xu; Jilei Xu; Jing Xu; Meihang Xu; Yin Xu; Yu Xu; Baojun Yan; Xiongbo Yan; Yupeng Yan; Anbo Yang; Changgen Yang; Huan Yang; Jie Yang; Lei Yang; Xiaoyu Yang; Yifan Yang; Haifeng Yao; Zafar Yasin; Jiaxuan Ye; Mei Ye; Ugur Yegin; Frédéric Yermia; Peihuai Yi; Xiangwei Yin; Zhengyun You; Boxiang Yu; Chiye Yu; Chunxu Yu; Hongzhao Yu; Miao Yu; Xianghui Yu; Zeyuan Yu; Chengzhuo Yuan; Ying Yuan; Zhenxiong Yuan; Ziyi Yuan; Baobiao Yue; Noman Zafar; Andre Zambanini; Pan Zeng; Shan Zeng; Tingxuan Zeng; Yuda Zeng; Liang Zhan; Feiyang Zhang; Guoqing Zhang; Haiqiong Zhang; Honghao Zhang; Jiawen Zhang; Jie Zhang; Jingbo Zhang; Peng Zhang; Qingmin Zhang; Shiqi Zhang; Tao Zhang; Xiaomei Zhang; Xuantong Zhang; Yan Zhang; Yinhong Zhang; Yiyu Zhang; Yongpeng Zhang; Yuanyuan Zhang; Yumei Zhang; Zhenyu Zhang; Zhijian Zhang; Fengyi Zhao; Jie Zhao; Rong Zhao; Shujun Zhao; Tianchi Zhao; Dongqin Zheng; Hua Zheng; Minshan Zheng; Yangheng Zheng; Weirong Zhong; Jing Zhou; Li Zhou; Nan Zhou; Shun Zhou; Xiang Zhou; Jiang Zhu; Kejun Zhu; Honglin Zhuang; Liang Zong; Jiaheng Zou; (JUNO Collaboration)
<jats:title>Abstract</jats:title> <jats:p>The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for <jats:inline-formula> <jats:tex-math><?CDATA $ ^8 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023004_M2.jpg" xlink:type="simple" /> </jats:inline-formula>B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting <jats:inline-formula> <jats:tex-math><?CDATA $ ^8 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023004_M3.jpg" xlink:type="simple" /> </jats:inline-formula>B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive background <jats:inline-formula> <jats:tex-math><?CDATA $ ^{238} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023004_M4.jpg" xlink:type="simple" /> </jats:inline-formula>U and <jats:inline-formula> <jats:tex-math><?CDATA $ ^{232} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023004_M5.jpg" xlink:type="simple" /> </jats:inline-formula>Th in the liquid scintillator can be controlled to 10 <jats:inline-formula> <jats:tex-math><?CDATA $ ^{-17} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023004_M6.jpg" xlink:type="simple" /> </jats:inline-formula> g/g. With ten years of data acquisition, approximately 60,000 signal and 30,000 background events are expected. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter, which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework. If <jats:inline-formula> <jats:tex-math><?CDATA $ \Delta m^{2}_{21} = 4.8\times10^{-5}\; (7.5\times10^{-5}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023004_M7.jpg" xlink:type="simple" /> </jats:inline-formula> eV <jats:inline-formula> <jats:tex-math><?CDATA $ ^{2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023004_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3 <jats:inline-formula> <jats:tex-math><?CDATA $ \sigma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023004_M9.jpg" xlink:type="simple" /> </jats:inline-formula> (2 <jats:inline-formula> <jats:tex-math><?CDATA $ \sigma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023004_M10.jpg" xlink:type="simple" /> </jats:inline-formula>) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moreover, JUNO can simultaneously measure <jats:inline-formula> <jats:tex-math><?CDATA $ \Delta m^2_{21} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023004_M11.jpg" xlink:type="simple" /> </jats:inline-formula> using <jats:inline-formula> <jats:tex-math><?CDATA $ ^8 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023004_M12.jpg" xlink:type="simple" /> </jats:inline-formula>B solar neutrinos to a precision of 20% or better, depending on the central value, and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of <jats:inline-formula> <jats:tex-math><?CDATA $ \Delta m^2_{21} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023004_M13.jpg" xlink:type="simple" /> </jats:inline-formula> reported by solar neutrino experiments and the KamLAND experiment. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023004
Universal function of the diffractive process in color dipole picture
Z. Jalilian; G. R. Boroun
<jats:title>Abstract</jats:title> <jats:p>In this study, we obtain the universal function corresponding to the diffractive process and show that the cross section exhibits geometrical scaling. It is observed that diffractive theory according to the color dipole approach at small-<jats:italic>x</jats:italic> is a convenient framework that reveals the color transparency and saturation phenomena. We also calculate the contribution of heavy quark production in the diffractive cross section at high energy that is determined by the small size dipole configuration. The ratio of the diffractive cross section to the total cross section in electron-proton collision is the other important quantity that is computed in this work. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023101
Spectroscopic properties of Δ baryons
Chandni Menapara; Zalak Shah; Ajay Kumar Rai
<jats:title>Abstract</jats:title> <jats:p>The resonance state of the <jats:inline-formula> <jats:tex-math><?CDATA $\Delta$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023102_M1.jpg" xlink:type="simple" /> </jats:inline-formula> baryon, which exists in four isospin ( <jats:inline-formula> <jats:tex-math><?CDATA $I= {3}/{2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023102_M2.jpg" xlink:type="simple" /> </jats:inline-formula>) states, has been studied using the hypercentral constituent quark model (hCQM) with a simple linear potential with added first order correction. The calculated data ranges for 1<jats:italic>S</jats:italic>-5<jats:italic>S</jats:italic>, 1<jats:italic>P</jats:italic>-5<jats:italic>P</jats:italic>, 1<jats:italic>D</jats:italic>-4<jats:italic>D</jats:italic> and 1<jats:italic>F</jats:italic>-2<jats:italic>F</jats:italic> are given, with possible spin-parity assignments for all the states. The magnetic moments have also been obtained for all four configurations. The <jats:inline-formula> <jats:tex-math><?CDATA $N\pi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> decay channel width has been calculated for a few states. The linear nature of the data has been verified through Regge trajectories. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023102
J/ψ-J/ψ scattering cross sections of quadratic and Cornell potentials
M. Imran Jamil; S.M. Sohail Gilani; Ahmad Wasif; Abdul Sattar Khan; Ahmad Awan
<jats:title>Abstract</jats:title> <jats:p>We study the scattering of <jats:inline-formula> <jats:tex-math><?CDATA $J/\psi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023103_M3.jpg" xlink:type="simple" /> </jats:inline-formula> - <jats:inline-formula> <jats:tex-math><?CDATA $J/\psi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> mesons using quadratic and Cornell potentials in our tetraquark ( <jats:inline-formula> <jats:tex-math><?CDATA ${{c\bar cc\bar c}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023103_M5.jpg" xlink:type="simple" /> </jats:inline-formula>) system. The system’s wavefunction in the restricted gluonic basis, which is written by utilizing the adiabatic approximation and Hamiltonian, is used via a quark potential model. The resonating group technique is used to obtain the integral equations, which are solved to obtain the unknown inter-cluster dependence of the total wavefunction of our tetraquark system. T-Matrix elements are calculated from the solutions, and eventually, the scattering cross sections are obtained using the two potentials. We compare these cross sections and find that the magnitudes of scattering cross sections of quadratic potential are higher than the Cornell potential. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023103
Revisiting the determining fraction of glueball component in f 0 mesons via radiative decays of J/ψ *
Xing-Dao Guo; Hong-Wei Ke; Ming-Gang Zhao; Liang Tang; Xue-Qian Li
<jats:title>Abstract</jats:title> <jats:p>QCD theory predicts the existence of glueballs, but so far all experimental endeavors have failed to identify any such states. To remedy this discrepancy between QCD, which has proven to be a successful theory for strong interactions, and the failure of experimental searches for glueballs, one is tempted to accept the promising interpretation that the glueballs mix with regular <jats:inline-formula> <jats:tex-math><?CDATA $ q\bar q $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M1.jpg" xlink:type="simple" /> </jats:inline-formula> states of the same quantum numbers. The lattice estimate of the masses of pure <jats:inline-formula> <jats:tex-math><?CDATA $ 0^{++} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M2.jpg" xlink:type="simple" /> </jats:inline-formula> glueballs ranges from 1 to 2 GeV, which is the region of the <jats:inline-formula> <jats:tex-math><?CDATA $ f_0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> family. Thus many authors suggest that the <jats:inline-formula> <jats:tex-math><?CDATA $ f_0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> mesonic series is an ideal place to study possible mixtures of glueballs and <jats:inline-formula> <jats:tex-math><?CDATA $ q\bar q $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M5.jpg" xlink:type="simple" /> </jats:inline-formula>. In this paper, following the strategy proposed by Close, Farrar and Li, we try to determine the fraction of glueball components in <jats:inline-formula> <jats:tex-math><?CDATA $ f_0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M6.jpg" xlink:type="simple" /> </jats:inline-formula> mesons using the measured mass spectra and the branching ratios of <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M7.jpg" xlink:type="simple" /> </jats:inline-formula> radiative decays into <jats:inline-formula> <jats:tex-math><?CDATA $ f_0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M8.jpg" xlink:type="simple" /> </jats:inline-formula> mesons. Since the pioneering papers by Close <jats:italic>et al</jats:italic>., more than 20 years have elapsed and more accurate measurements have been done by several experimental collaborations, so it is time to revisit this interesting topic using new data. We suppose <jats:inline-formula> <jats:tex-math><?CDATA $ f_0(500) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M9.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ f_0(980) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M10.jpg" xlink:type="simple" /> </jats:inline-formula> to be pure quark states, while for <jats:inline-formula> <jats:tex-math><?CDATA $ f_0(1370) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ f_0(1500) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M12.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ f_0(1710) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, to fit both the experimental data of <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M14.jpg" xlink:type="simple" /> </jats:inline-formula> radiative decay and their mass spectra, glueball components are needed. Moreover, the mass of the pure <jats:inline-formula> <jats:tex-math><?CDATA $ 0^{++} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023104_M15.jpg" xlink:type="simple" /> </jats:inline-formula> glueball is phenomenologically determined. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023104
Investigating bottom-quark Yukawa interaction at Higgs factory *
Qi Bi; Kangyu Chai; Jun Gao; Yiming Liu; Hao Zhang
<jats:title>Abstract</jats:title> <jats:p>Measuring the fermion Yukawa coupling constants is important for understanding the origin of the fermion masses and their relationship with spontaneously electroweak symmetry breaking. In contrast, some new physics (NP) models change the Lorentz structure of the Yukawa interactions between standard model (SM) fermions and the SM-like Higgs boson, even in their decoupling limit. Thus, the precise measurement of the fermion Yukawa interactions is a powerful tool of NP searching in the decoupling limit. In this work, we show the possibility of investigating the Lorentz structure of the bottom-quark Yukawa interaction with the 125 GeV SM-like Higgs boson for future <jats:inline-formula> <jats:tex-math><?CDATA $e^+e^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023105_M1.jpg" xlink:type="simple" /> </jats:inline-formula> colliders. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023105
General neutrino mass spectrum and mixing properties in seesaw mechanisms *
Wojciech Flieger; Janusz Gluza
<jats:title>Abstract</jats:title> <jats:p>Neutrinos stand out among the elementary particles because of their unusually small masses. Various seesaw mechanisms attempt to explain this fact. In this work, applying insights from matrix theory, we are in a position to treat variants of seesaw mechanisms in a general manner. Specifically, using Weyl's inequalities, we discuss and rigorously prove under which conditions the seesaw framework leads to a mass spectrum with exactly three light neutrinos. We find an estimate of the mass of heavy neutrinos to be the mass obtained by neglecting light neutrinos, shifted at most by the maximal strength of the coupling to the light neutrino sector. We provide analytical conditions allowing one to prescribe that precisely two out of five neutrinos are heavy. For higher-dimensional cases the inverse eigenvalue methods are used. In particular, for the <jats:italic>CP-</jats:italic>invariant scenarios we show that if the neutrino sector has a valid mass matrix after neglecting the light ones, i.e. if the respective mass submatrix is positive definite, then large masses are provided by matrices with large elements accumulated on the diagonal. Finally, the Davis-Kahan theorem is used to show how masses affect the rotation of light neutrino eigenvectors from the standard Euclidean basis. This general observation concerning neutrino mixing, together with results on the mass spectrum properties, opens directions for further neutrino physics studies using matrix analysis. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023106
The symmetry group of Feynman diagrams and consistency of the BPHZ renormalization scheme *
Kun Hao; Kangjie Shi
<jats:title>Abstract</jats:title> <jats:p>We study the relation between the symmetry group of a Feynman diagram and its reduced diagrams. We then prove that the counterterms in the BPHZ renormalization scheme are consistent with adding counterterms to the interaction Hamiltonian in all cases, including that of Feynman diagrams with symmetry factors.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023107
Positivity in electron-positron scattering: testing the axiomatic quantum field theory principles and probing the existence of UV states *
Benjamin Fuks; Yiming Liu; Cen Zhang; Shuang-Yong Zhou
<jats:title>Abstract</jats:title> <jats:p>We consider the positivity bounds on dimension-8 four-electron operators and study two related phenomenological aspects at future lepton colliders. First, if positivity is violated, probing such violations will revolutionize our understanding of the fundamental pillars of quantum field theory and the <jats:italic>S</jats:italic>-matrix theory. We observe that positivity violation at scales of 1-10 TeV can potentially be probed at future lepton colliders even if one assumes that dimension-6 operators are also present. Second, the positive nature of the dimension-8 parameter space often allows us to either directly infer the existence of UV-scale particles together with their quantum numbers or exclude them up to certain scales in a model-independent way. In particular, dimension-8 positivity plays an important role in the test of the Standard Model. If no deviations from the Standard Model are observed, it allows for simultaneous exclusion limits on all kinds of potential UV-complete models. Unlike the dimension-6 case, these limits apply regardless of the UV model setup and cannot be removed by possible cancellations among various UV contributions. This thus consists of a novel and universal test to confirm the Standard Model. We demonstrate with realistic examples how all the previously mentioned possibilities, including the test of positivity violation, can be achieved. Hence, we provide an important motivation for studying dimension-8 operators more comprehensively. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023108
Charmed and ϕ meson decay constants from 2+1-flavor lattice QCD *
Ying Chen; Wei-Feng Chiu; Ming Gong; Zhaofeng Liu; Yunheng Ma
<jats:title>Abstract</jats:title> <jats:p>On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of <jats:inline-formula> <jats:tex-math><?CDATA $ D_{s}^{(*)} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ D^{(*)} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ \phi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. The lattice size is <jats:inline-formula> <jats:tex-math><?CDATA $ 48^3\times96 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, which corresponds to a spatial extension of <jats:inline-formula> <jats:tex-math><?CDATA $ \sim5.5 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M5.jpg" xlink:type="simple" /> </jats:inline-formula> fm, with a lattice spacing of <jats:inline-formula> <jats:tex-math><?CDATA $ a\approx 0.114 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M6.jpg" xlink:type="simple" /> </jats:inline-formula> fm. For the valence light, strange, and charm quarks, we use overlap fermions at several mass points close to their physical values. Our results at the physical point are <jats:inline-formula> <jats:tex-math><?CDATA $ f_D = 213(5) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M7.jpg" xlink:type="simple" /> </jats:inline-formula> MeV, <jats:inline-formula> <jats:tex-math><?CDATA $ f_{D_s} = 249(7) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M8.jpg" xlink:type="simple" /> </jats:inline-formula> MeV, <jats:inline-formula> <jats:tex-math><?CDATA $ f_{D^*} = 234(6) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M9.jpg" xlink:type="simple" /> </jats:inline-formula> MeV, <jats:inline-formula> <jats:tex-math><?CDATA $ f_{D_s^*} = 274(7) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M10.jpg" xlink:type="simple" /> </jats:inline-formula> MeV, and <jats:inline-formula> <jats:tex-math><?CDATA $ f_\phi = 241(9) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M11.jpg" xlink:type="simple" /> </jats:inline-formula> MeV. The couplings of <jats:inline-formula> <jats:tex-math><?CDATA $ D^* $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M12.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ D_s^* $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M13.jpg" xlink:type="simple" /> </jats:inline-formula> to the tensor current ( <jats:inline-formula> <jats:tex-math><?CDATA $ f_V^T $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M14.jpg" xlink:type="simple" /> </jats:inline-formula>) can be derived from ratios <jats:inline-formula> <jats:tex-math><?CDATA $ f_{D^*}^T/f_{D^*} = 0.91(4) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M15.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ f_{D_s^*}^T/f_{D_s^*} = 0.92(4) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M16.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively, which are the first lattice quantum chromodynamics (QCD) results. We also obtain ratios <jats:inline-formula> <jats:tex-math><?CDATA $ f_{D^*}/f_D = 1.10(3) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M17.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ f_{D_s^*}/f_{D_s} = 1.10(4) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M18.jpg" xlink:type="simple" /> </jats:inline-formula>, which reflect the size of heavy quark symmetry breaking in charmed mesons. Ratios <jats:inline-formula> <jats:tex-math><?CDATA $ f_{D_s}/f_{D} = 1.16(3) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M19.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ f_{D_s^*}/f_{D^*} = 1.17(3) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023109_M20.jpg" xlink:type="simple" /> </jats:inline-formula> can be taken as a measure of <jats:italic>SU</jats:italic>(3) flavor symmetry breaking. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023109