Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
The eccentricity enhancement effect of intermediate-mass-ratio-inspirals: dark matter and black hole mass *
Meirong Tang; Zhaoyi Xu; Jiancheng Wang
<jats:title>Abstract</jats:title> <jats:p>It was found that dark matter (DM) in an intermediate-mass-ratio-inspiral (IMRI) system has a significant enhancement effect on the orbital eccentricity of a stellar massive compact object, such as a black hole (BH), which may be tested by space-based gravitational wave (GW) detectors, including LISA, Taiji, and Tianqin in future observations. In this paper, we study the enhancement effect of the eccentricity for an IMRI under different DM density profiles and center BH masses. Our results are as follows: (1) in terms of the general DM spike distribution, the enhancement of the eccentricity is basically consistent with the power-law profile, which indicates that it is reasonable to adopt the power-law profile; (2) in the presence of a DM spike, the different masses of the center BH will affect the eccentricity, which provides a new way for us to detect the BH's mass; and (3) considering the change in the eccentricity in the presence and absence of a DM spike, we find that it is possible to distinguish DM models by measuring the eccentricity at a scale of approximately <jats:inline-formula> <jats:tex-math><?CDATA $ 10^{5} {\rm GM}/c^{2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_015110_M1.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 015110
Lorentz violation, quantum tunneling, and information conservation *
Guo-Ping Li; Ke-Jian He; Bing-Bing Chen
<jats:title>Abstract</jats:title> <jats:p>In this paper, by introducing the Lorentz-invariance-violation (LIV) class of dispersion relations (DR) suppressed by the second power <jats:inline-formula> <jats:tex-math><?CDATA $ (E/E_{\rm QG})^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_015111_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, we investigated the effect of the LIV on the Hawking radiation of a charged Dirac particle based on tunneling from a Reissner-Nordström (RN) black hole. It was determined that the LIV speeds up black hole evaporation. As a result, the induced Hawking temperature was very <jats:italic>sensitive</jats:italic> to changes in the energy of the radiation particle. However, at the same energy level, it was <jats:italic>insensitive</jats:italic> to changes in the charge of the radiation particle. This is phenomenological evidence in support of the LIV-DR as a candidate for describing the effect of quantum gravity. Moreover, when the effect of the LIV was included, we discovered that the statistical correlations with the Planck-scale corrections between successive emissions could leak out information via radiation. We also determined that black hole radiation via tunneling is an entropy conservation process, and no information loss occurred during radiation, where the interpretation of the entropy of a black hole is addressed. Finally, we concluded that black hole evaporation is still a unitary process in the context of quantum gravity. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 015111
Mass of a short-range correlated nucleon *
Rong Wang; Xu-Rong Chen; Tao-Feng Wang
<jats:title>Abstract</jats:title> <jats:p>Nucleon properties and structure should be modified by short-range correlations (SRC) among nucleons. By analyzing SRC ratio data, we extract the mass of a nucleon in an SRC pair and the expected number of pn-SRC pairs in deuterium, under the assumption that the SRC nucleon mass is universal for different nuclei. The nucleon mass of a two-nucleon SRC pair is <jats:inline-formula> <jats:tex-math><?CDATA $m_{\rm{SRC}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021001_M1.jpg" xlink:type="simple" /> </jats:inline-formula>= 852 ± 18 MeV, and the number of pn-SRC pairs in deuterium is <jats:inline-formula> <jats:tex-math><?CDATA $n^{d}_{\rm{SRC}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021001_M2.jpg" xlink:type="simple" /> </jats:inline-formula>=0.021 ± 0.005. The mass deficit of the strongly overlapping nucleon can be explained by the trace anomaly contribution to the mass in QCD or alternatively by the vacuum energy in the MIT bag model. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 021001
New look at Geiger-Nuttall law and α clustering of heavy nuclei *
Yi-Bin Qian; Zhong-Zhou Ren
<jats:title>Abstract</jats:title> <jats:p>The Geiger-Nuttall (GN) law of <jats:italic>α</jats:italic> decay is commonly explained in terms of the quantum tunneling phenomenon. In this study, we show that such an explanation is actually not enough regarding the <jats:italic>α</jats:italic> particle clustering. Such a conclusion is drawn after exploring the involved coefficients of the GN law based on the conventional description of <jats:italic>α</jats:italic> decay, namely the formation of an <jats:italic>α</jats:italic> cluster and its subsequent penetration. The specific roles of the two former processes, in the GN law, manifest themselves via the systematical analysis of the calculated and experimental <jats:italic>α</jats:italic> decay half-lives versus the decay energies across the <jats:inline-formula> <jats:tex-math><?CDATA $ Z=82 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021002_M9000.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ N=126 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021002_M9001.jpg" xlink:type="simple" /> </jats:inline-formula> shell closures. The <jats:italic>α</jats:italic>-cluster preformation probability is then found to behave in a GN-like pattern. This previously ignored point is explicitly demonstrated as the product of an interplay between the mean-field and pairing effect, which in turn reveals the structural influence on the formation of the <jats:italic>α</jats:italic> cluster in a simple and clear manner. In addition to providing an effective method to evaluate the amount of surface <jats:italic>α</jats:italic> clustering in heavy nuclei, the present conjecture supports other theoretical treatments of the <jats:italic>α</jats:italic> preformation probability. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 021002
X 0(2900) and its heavy quark spin partners in molecular picture *
Mei-Wei Hu; Xue-Yi Lao; Pan Ling; Qian Wang
<jats:title>Abstract</jats:title> <jats:p>The <jats:inline-formula> <jats:tex-math><?CDATA $X_0(2900)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, recently observed by the LHCb Collaboration in the <jats:inline-formula> <jats:tex-math><?CDATA $D^-K^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M2.jpg" xlink:type="simple" /> </jats:inline-formula> invariant mass of the <jats:inline-formula> <jats:tex-math><?CDATA $B^+\to D^+D^-K^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M3.jpg" xlink:type="simple" /> </jats:inline-formula> process, is the first exotic candidate with four different flavors, beginning a new era for the hadron community. Under the assumption that the <jats:inline-formula> <jats:tex-math><?CDATA $X_0(2900)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M4.jpg" xlink:type="simple" /> </jats:inline-formula> is a <jats:inline-formula> <jats:tex-math><?CDATA $I(J^P)=0(0^+)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M5.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}^*K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M6.jpg" xlink:type="simple" /> </jats:inline-formula> hadronic molecule, we extracted the whole heavy-quark symmetry multiplet formed by the <jats:inline-formula> <jats:tex-math><?CDATA $\left(\bar{D},\bar{D}^*\right)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M7.jpg" xlink:type="simple" /> </jats:inline-formula> doublet and the <jats:inline-formula> <jats:tex-math><?CDATA $K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M8.jpg" xlink:type="simple" /> </jats:inline-formula> meson. For the bound state case, there would be two additional <jats:inline-formula> <jats:tex-math><?CDATA $I(J^P)=0(1^+)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M9.jpg" xlink:type="simple" /> </jats:inline-formula> hadronic molecules associated with the <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M10.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}^*K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M11.jpg" xlink:type="simple" /> </jats:inline-formula> channels, as well as one additional <jats:inline-formula> <jats:tex-math><?CDATA $I(J^P)=0(2^+)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M12.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}^*K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M13.jpg" xlink:type="simple" /> </jats:inline-formula> molecule. In the light quark limit, they are <jats:inline-formula> <jats:tex-math><?CDATA $36.66~{\rm{MeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M14.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $34.22~{\rm{MeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M15.jpg" xlink:type="simple" /> </jats:inline-formula> below the <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M16.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}^*K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M17.jpg" xlink:type="simple" /> </jats:inline-formula> thresholds, respectively, which are unambiguously fixed by the mass position of the <jats:inline-formula> <jats:tex-math><?CDATA $X_0(2900)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M18.jpg" xlink:type="simple" /> </jats:inline-formula>. For the virtual state case, there would be one additional <jats:inline-formula> <jats:tex-math><?CDATA $I(J^P)=0(1^+)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M19.jpg" xlink:type="simple" /> </jats:inline-formula> hadronic molecule, strongly coupled to the <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M20.jpg" xlink:type="simple" /> </jats:inline-formula> channel, and one additional <jats:inline-formula> <jats:tex-math><?CDATA $I(J^P)=0(2^+)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M21.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}^*K^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M22.jpg" xlink:type="simple" /> </jats:inline-formula> molecule. Searching for these heavy quark spin partners will help shed light on the nature of the <jats:inline-formula> <jats:tex-math><?CDATA $X_0(2900)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_021003_M23.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 021003
Chiral crossover characterized by Mott transition at finite temperature *
Shijun Mao
<jats:title>Abstract</jats:title> <jats:p>We discuss the proper definition for the chiral crossover at finite temperature, based on Goldstone's theorem. Different from the commonly used maximum change in chiral condensate, we propose defining the crossover temperature using the Mott transition of pseudo-Goldstone bosons, which, by definition, guarantees Goldstone's theorem. We analytically and numerically demonstrate this property in the frame of a Pauli-Villars regularized NJL model. In an external magnetic field, we find that the Mott transition temperature shows an inverse magnetic catalysis effect.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 021004
Dibaryons: Molecular versus compact hexaquarks *
H. Clement; T. Skorodko
<jats:title>Abstract</jats:title> <jats:p>Hexaquarks constitute a natural extension of complex quark systems, just as tetra- and pentaquarks do. To this end, the current status of <jats:inline-formula> <jats:tex-math><?CDATA $d^*(2380)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_022001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> in both experiment and theory is reviewed. Recent high-precision measurements in the nucleon-nucleon channel and analyses thereof have established <jats:inline-formula> <jats:tex-math><?CDATA $d^*(2380)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_022001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> as an indisputable resonance in the long-sought dibaryon channel. Important features of this <jats:inline-formula> <jats:tex-math><?CDATA $I(J^P) = 0(3^+)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_022001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> state are its narrow width and deep binding relative to the <jats:inline-formula> <jats:tex-math><?CDATA $\Delta(1232)\Delta(1232)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_022001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> threshold. Its decay branchings favor theoretical calculations predicting a compact hexaquark nature of this state. We review the current status of experimental and theoretical studies on <jats:inline-formula> <jats:tex-math><?CDATA $d^*(2380)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_022001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> as well as new physics aspects it may bring in future. In addition, we review the situation at the <jats:inline-formula> <jats:tex-math><?CDATA $\Delta(1232) N$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_022001_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $N^*(1440)N$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_022001_M7.jpg" xlink:type="simple" /> </jats:inline-formula> thresholds, where evidence for a number of resonances of presumably molecular nature has been found – similar to the situation in charmed and beauty sectors. Finally, we briefly discuss the situation of dibaryon searches in the flavored quark sectors. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 022001
Analysis of Bc → τντ at CEPC *
Taifan Zheng; Ji Xu; Lu Cao; Dan Yu; Wei Wang; Soeren Prell; Yeuk-Kwan E. Cheung; Manqi Ruan
<jats:title>Abstract</jats:title> <jats:p>Precise determination of the <jats:inline-formula> <jats:tex-math><?CDATA $B_c \to \tau\nu_\tau$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> branching ratio provides an advantageous opportunity for understanding the electroweak structure of the Standard Model, measuring the CKM matrix element <jats:inline-formula> <jats:tex-math><?CDATA $|V_{cb}|$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, and probing new physics models. In this paper, we discuss the potential of measuring the process <jats:inline-formula> <jats:tex-math><?CDATA $B_c \to \tau\nu_\tau$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> with <jats:inline-formula> <jats:tex-math><?CDATA $\tau$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> decaying leptonically at the proposed Circular Electron Positron Collider (CEPC). We conclude that during the <jats:italic>Z</jats:italic> pole operation, the channel signal can achieve five- <jats:inline-formula> <jats:tex-math><?CDATA $\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> significance with <jats:inline-formula> <jats:tex-math><?CDATA $\sim 10^9$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M6.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:italic>Z</jats:italic> decays, and the signal strength accuracies for <jats:inline-formula> <jats:tex-math><?CDATA $B_c \to \tau\nu_\tau$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M7.jpg" xlink:type="simple" /> </jats:inline-formula> can reach around 1% level at the nominal CEPC <jats:italic>Z</jats:italic> pole statistics of one trillion <jats:italic>Z</jats:italic> decays, assuming the total <jats:inline-formula> <jats:tex-math><?CDATA $B_c \to \tau \nu_\tau$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M8.jpg" xlink:type="simple" /> </jats:inline-formula> yield is <jats:inline-formula> <jats:tex-math><?CDATA $3.6 \times 10^6$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M9.jpg" xlink:type="simple" /> </jats:inline-formula>. Our theoretical analysis indicates the accuracy could provide a strong constraint on the general effective Hamiltonian for the <jats:inline-formula> <jats:tex-math><?CDATA $b \to c\tau\nu$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M10.jpg" xlink:type="simple" /> </jats:inline-formula> transition. If the total <jats:inline-formula> <jats:tex-math><?CDATA $B_c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M11.jpg" xlink:type="simple" /> </jats:inline-formula> yield can be determined to <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{O}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M12.jpg" xlink:type="simple" /> </jats:inline-formula>(1%) level of accuracy in the future, these results also imply <jats:inline-formula> <jats:tex-math><?CDATA $|V_{cb}|$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M13.jpg" xlink:type="simple" /> </jats:inline-formula> could be measured up to <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{O}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023001_M14.jpg" xlink:type="simple" /> </jats:inline-formula>(1%) level of accuracy. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023001
Study of BESIII trigger efficiencies with the 2018 J/ψ data *
M. Ablikim; M. N. Achasov; P. Adlarson; S. Ahmed; M. Albrecht; R. Aliberti; A. Amoroso; M. R. An; Q. An; X. H. Bai; Y. Bai; O. Bakina; R. Baldini Ferroli; I. Balossino; Y. Ban; K. Begzsuren; N. Berger; M. Bertani; D. Bettoni; F. Bianchi; J. Bloms; A. Bortone; I. Boyko; R. A. Briere; H. Cai; X. Cai; A. Calcaterra; G. F. Cao; N. Cao; S. A. Cetin; J. F. Chang; W. L. Chang; G. Chelkov; D. Y. Chen; G. Chen; H. S. Chen; M. L. Chen; S. J. Chen; X. R. Chen; Y. B. Chen; Z. J Chen; W. S. Cheng; G. Cibinetto; F. Cossio; X. F. Cui; H. L. Dai; X. C. Dai; A. Dbeyssi; R. E. de Boer; D. Dedovich; Z. Y. Deng; A. Denig; I. Denysenko; M. Destefanis; F. De Mori; Y. Ding; C. Dong; J. Dong; L. Y. Dong; M. Y. Dong; X. Dong; S. X. Du; Y. L. Fan; J. Fang; S. S. Fang; Y. Fang; R. Farinelli; L. Fava; F. Feldbauer; G. Felici; C. Q. Feng; J. H. Feng; M. Fritsch; C. D. Fu; Y. Gao; Y. Gao; Y. Gao; Y. G. Gao; I. Garzia; P. T. Ge; C. Geng; E. M. Gersabeck; A Gilman; K. Goetzen; L. Gong; W. X. Gong; W. Gradl; M. Greco; L. M. Gu; M. H. Gu; S. Gu; Y. T. Gu; C. Y Guan; A. Q. Guo; L. B. Guo; R. P. Guo; Y. P. Guo; A. Guskov; T. T. Han; W. Y. Han; X. Q. Hao; F. A. Harris; H Hüsken; K. L. He; F. H. Heinsius; C. H. Heinz; T. Held; Y. K. Heng; C. Herold; M. Himmelreich; T. Holtmann; Y. R. Hou; Z. L. Hou; H. M. Hu; J. F. Hu; T. Hu; Y. Hu; G. S. Huang; L. Q. Huang; X. T. Huang; Y. P. Huang; Z. Huang; T. Hussain; W. Ikegami Andersson; W. Imoehl; M. Irshad; S. Jaeger; S. Janchiv; Q. Ji; Q. P. Ji; X. B. Ji; X. L. Ji; H. B. Jiang; X. S. Jiang; J. B. Jiao; Z. Jiao; S. Jin; Y. Jin; T. Johansson; N. Kalantar-Nayestanaki; X. S. Kang; R. Kappert; M. Kavatsyuk; B. C. Ke; I. K. Keshk; A. Khoukaz; P. Kiese; R. Kiuchi; R. Kliemt; L. Koch; O. B. Kolcu; B. Kopf; M. Kuemmel; M. Kuessner; A. Kupsc; M. G. Kurth; W. Kühn; J. J. Lane; J. S. Lange; P. Larin; A. Lavania; L. Lavezzi; Z. H. Lei; H. Leithoff; M. Lellmann; T. Lenz; C. Li; C. H. Li; Cheng Li; D. M. Li; F. Li; G. Li; H. Li; H. Li; H. B. Li; H. J. Li; J. L. Li; J. Q. Li; J. S. Li; Ke Li; L. K. Li; Lei Li; P. R. Li; S. Y. Li; W. D. Li; W. G. Li; X. H. Li; X. L. Li; Z. Y. Li; H. Liang; H. Liang; H. Liang; Y. F. Liang; Y. T. Liang; L. Z. Liao; J. Libby; C. X. Lin; B. J. Liu; C. X. Liu; D. Liu; F. H. Liu; Fang Liu; Feng Liu; H. B. Liu; H. M. Liu; Huanhuan Liu; Huihui Liu; J. B. Liu; J. L. Liu; J. Y. Liu; K. Liu; K. Y. Liu; Ke Liu; L. Liu; M. H. Liu; P. L. Liu; Q. Liu; Q. Liu; S. B. Liu; Shuai Liu; T. Liu; W. M. Liu; X. Liu; Y. Liu; Y. B. Liu; Z. A. Liu; Z. Q. Liu; X. C. Lou; F. X. Lu; F. X. Lu; H. J. Lu; J. D. Lu; J. G. Lu; X. L. Lu; Y. Lu; Y. P. Lu; C. L. Luo; M. X. Luo; P. W. Luo; T. Luo; X. L. Luo; S. Lusso; X. R. Lyu; F. C. Ma; H. L. Ma; L. L. Ma; M. M. Ma; Q. M. Ma; R. Q. Ma; R. T. Ma; X. X. Ma; X. Y. Ma; F. E. Maas; M. Maggiora; S. Maldaner; S. Malde; Q. A. Malik; A. Mangoni; Y. J. Mao; Z. P. Mao; S. Marcello; Z. X. Meng; J. G. Messchendorp; G. Mezzadri; T. J. Min; R. E. Mitchell; X. H. Mo; Y. J. Mo; N. Yu. Muchnoi; H. Muramatsu; S. Nakhoul; Y. Nefedov; F. Nerling; I. B. Nikolaev; Z. Ning; S. Nisar; S. L. Olsen; Q. Ouyang; S. Pacetti; X. Pan; Y. Pan; A. Pathak; P. Patteri; M. Pelizaeus; H. P. Peng; K. Peters; J. Pettersson; J. L. Ping; R. G. Ping; R. Poling; V. Prasad; H. Qi; H. R. Qi; K. H. Qi; M. Qi; T. Y. Qi; T. Y. Qi; S. Qian; W.-B. Qian; Z. Qian; C. F. Qiao; L. Q. Qin; X. S. Qin; Z. H. Qin; J. F. Qiu; S. Q. Qu; K. H. Rashid; K. Ravindran; C. F. Redmer; A. Rivetti; V. Rodin; M. Rolo; G. Rong; Ch. Rosner; M. Rump; H. S. Sang; A. Sarantsev; Y. Schelhaas; C. Schnier; K. Schoenning; M. Scodeggio; D. C. Shan; W. Shan; X. Y. Shan; J. F. Shangguan; M. Shao; C. P. Shen; P. X. Shen; X. Y. Shen; H. C. Shi; R. S. Shi; X. Shi; X. D Shi; W. M. Song; Y. X. Song; S. Sosio; S. Spataro; K. X. Su; P. P. Su; F. F. Sui; G. X. Sun; H. K. Sun; J. F. Sun; L. Sun; S. S. Sun; T. Sun; W. Y. Sun; W. Y. Sun; X Sun; Y. J. Sun; Y. K. Sun; Y. Z. Sun; Z. T. Sun; Y. H. Tan; Y. X. Tan; C. J. Tang; G. Y. Tang; J. Tang; J. X. Teng; V. Thoren; I. Uman; B. Wang; C. W. Wang; D. Y. Wang; H. J. Wang; H. P. Wang; K. Wang; L. L. Wang; M. Wang; M. Z. Wang; Meng Wang; W. Wang; W. H. Wang; W. P. Wang; X. Wang; X. F. Wang; X. L. Wang; Y. Wang; Y. Wang; Y. D. Wang; Y. F. Wang; Y. Q. Wang; Y. Y. Wang; Z. Wang; Z. Y. Wang; Ziyi Wang; Zongyuan Wang; D. H. Wei; P. Weidenkaff; F. Weidner; S. P. Wen; D. J. White; U. Wiedner; G. Wilkinson; M. Wolke; L. Wollenberg; J. F. Wu; L. H. Wu; L. J. Wu; X. Wu; Z. Wu; L. Xia; H. Xiao; S. Y. Xiao; Z. J. Xiao; X. H. Xie; Y. G. Xie; Y. H. Xie; T. Y. Xing; G. F. Xu; Q. J. Xu; W. Xu; X. P. Xu; F. Yan; L. Yan; W. B. Yan; W. C. Yan; Xu Yan; H. J. Yang; H. X. Yang; L. Yang; S. L. Yang; Y. X. Yang; Yifan Yang; Zhi Yang; M. Ye; M. H. Ye; J. H. Yin; Z. Y. You; B. X. Yu; C. X. Yu; G. Yu; J. S. Yu; T. Yu; C. Z. Yuan; L. Yuan; X. Q. Yuan; Y. Yuan; Z. Y. Yuan; C. X. Yue; A. Yuncu; A. A. Zafar; Y. Zeng; B. X. Zhang; Guangyi Zhang; H. Zhang; H. H. Zhang; H. H. Zhang; H. Y. Zhang; J. J. Zhang; J. L. Zhang; J. Q. Zhang; J. W. Zhang; J. Y. Zhang; J. Z. Zhang; Jianyu Zhang; Jiawei Zhang; L. Q. Zhang; Lei Zhang; S. Zhang; S. F. Zhang; Shulei Zhang; X. D. Zhang; X. Y. Zhang; Y. Zhang; Y. H. Zhang; Y. T. Zhang; Yan Zhang; Yao Zhang; Yi Zhang; Z. H. Zhang; Z. Y. Zhang; G. Zhao; J. Zhao; J. Y. Zhao; J. Z. Zhao; Lei Zhao; Ling Zhao; M. G. Zhao; Q. Zhao; S. J. Zhao; Y. B. Zhao; Y. X. Zhao; Z. G. Zhao; A. Zhemchugov; B. Zheng; J. P. Zheng; Y. Zheng; Y. H. Zheng; B. Zhong; C. Zhong; L. P. Zhou; Q. Zhou; X. Zhou; X. K. Zhou; X. R. Zhou; A. N. Zhu; J. Zhu; K. Zhu; K. J. Zhu; S. H. Zhu; T. J. Zhu; W. J. Zhu; W. J. Zhu; Y. C. Zhu; Z. A. Zhu; B. S. Zou; J. H. Zou; (BESIII Collaboration)
<jats:title>Abstract</jats:title> <jats:p>Using a dedicated data sample taken in 2018 on the <jats:italic>J</jats:italic>/<jats:italic>ψ</jats:italic> peak, we perform a detailed study of the trigger efficiencies of the BESIII detector. The efficiencies are determined from three representative physics processes, namely Bhabha scattering, dimuon production and generic hadronic events with charged particles. The combined efficiency of all active triggers approaches 100% in most cases, with uncertainties small enough not to affect most physics analyses. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023002
Study of the CKM angle γ sensitivity using flavor untagged decays *
D. Ao; D. Decamp; W. B. Qian; S. Ricciardi; H. Sazak; S. T’Jampens; V. Tisserand; Z. R. Wang; Z. W. Yang; S. N. Zhang; X. K. Zhou
<jats:title>Abstract</jats:title> <jats:p>A sensitivity study on the measurement of the CKM angle <jats:inline-formula> <jats:tex-math><?CDATA $ \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M2.jpg" xlink:type="simple" /> </jats:inline-formula> from <jats:inline-formula> <jats:tex-math><?CDATA $ {{B^0_s}}\rightarrow \tilde{D}^{(*)0}\phi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M3.jpg" xlink:type="simple" /> </jats:inline-formula> decays is conducted using the <jats:italic>D-</jats:italic>meson reconstructed in the quasi flavour-specific modes <jats:inline-formula> <jats:tex-math><?CDATA $ K\pi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ K3\pi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ K\pi{{\pi^{0}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, as well as <jats:italic>CP</jats:italic>-eigenstate modes <jats:inline-formula> <jats:tex-math><?CDATA $ KK $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \pi\pi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, where the notation <jats:inline-formula> <jats:tex-math><?CDATA $ \tilde{D}^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M9.jpg" xlink:type="simple" /> </jats:inline-formula> corresponds to a <jats:inline-formula> <jats:tex-math><?CDATA $ {{D^0}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M10.jpg" xlink:type="simple" /> </jats:inline-formula> or <jats:inline-formula> <jats:tex-math><?CDATA $ {{{\kern 0.2em\overline{\kern -0.2em D}{}}{}^0}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M11.jpg" xlink:type="simple" /> </jats:inline-formula> meson. The LHCb experiment is presented as a use case. A statistical uncertainty of approximately <jats:inline-formula> <jats:tex-math><?CDATA $8^{\circ}-19^{\circ}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M12.jpg" xlink:type="simple" /> </jats:inline-formula> can be achieved with the <jats:inline-formula> <jats:tex-math><?CDATA $ pp $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M13.jpg" xlink:type="simple" /> </jats:inline-formula> collision data collected in the LHCb experiment from 2011 to 2018. The sensitivity to <jats:inline-formula> <jats:tex-math><?CDATA $ \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M14.jpg" xlink:type="simple" /> </jats:inline-formula> should be of the order <jats:inline-formula> <jats:tex-math><?CDATA $3^{\circ}-8^{\circ}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M15.jpg" xlink:type="simple" /> </jats:inline-formula> after accumulating 23 fb<jats:sup>-1</jats:sup> of <jats:inline-formula> <jats:tex-math><?CDATA $ pp $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M16.jpg" xlink:type="simple" /> </jats:inline-formula> collision data by 2025, whereas it is expected to improve further by 300 fb<jats:sup>-1</jats:sup> by the second half of the 2030 decade. The accuracy is dependent on the strong parameters <jats:inline-formula> <jats:tex-math><?CDATA $ {{r^{(*)}_{B}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M17.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ {{\delta^{(*)}_{B}}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M18.jpg" xlink:type="simple" /> </jats:inline-formula>, which together with <jats:inline-formula> <jats:tex-math><?CDATA $ \gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M19.jpg" xlink:type="simple" /> </jats:inline-formula>describe the interference between the leading amplitudes of the <jats:inline-formula> <jats:tex-math><?CDATA $ {{B^0_s}}\rightarrow \tilde{D}^{(*)0}\phi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_2_023003_M20.jpg" xlink:type="simple" /> </jats:inline-formula> decays. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 023003