Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Analysis of the 1S and 2S states of Λ Q and Ξ Q with QCD sum rules *
Zhi-Gang Wang; Hui-Juan Wang
<jats:title>Abstract</jats:title> <jats:p>In this article, we study the ground states and the first radial excited states of the flavor antitriplet heavy baryon states <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda_Q$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\Xi_Q$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M2.jpg" xlink:type="simple" /> </jats:inline-formula> with the spin-parity <jats:inline-formula> <jats:tex-math><?CDATA $J^P={1\over 2}^{+}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M3.jpg" xlink:type="simple" /> </jats:inline-formula> by carrying out operator product expansion up to vacuum condensates of dimension <jats:inline-formula> <jats:tex-math><?CDATA $10$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M4.jpg" xlink:type="simple" /> </jats:inline-formula> in a consistent way. We observe for the first time that the higher dimensional vacuum condensates play an important role, and obtain very stable QCD sum rules with variations of the Borel parameters for the heavy baryon states. The predicted masses <jats:inline-formula> <jats:tex-math><?CDATA $6.08\pm0.09\,{\rm{GeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $2.78\pm0.08\,{\rm{GeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $2.96\pm0.09\,{\rm{GeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M7.jpg" xlink:type="simple" /> </jats:inline-formula> for the first radial excited states <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda_b(2{{S}})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda_c(2{{S}})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $\Xi_c(2{{S}})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively, are in excellent agreement with the experimental data and support assigning <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda_b(6072)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda_c(2765)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $\Xi_c(2980/2970)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M13.jpg" xlink:type="simple" /> </jats:inline-formula> to be the first radial excited states of <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda_b$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M14.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda_c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M15.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $\Xi_c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M16.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively. The predicted mass <jats:inline-formula> <jats:tex-math><?CDATA $6.24\pm0.07\,{\rm{GeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M17.jpg" xlink:type="simple" /> </jats:inline-formula> for <jats:inline-formula> <jats:tex-math><?CDATA $\Xi_b(2{{S}})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013109_M18.jpg" xlink:type="simple" /> </jats:inline-formula> can be confirmed using experimental data in the future. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 013109
Asymptotic structure of Einstein-Gauss-Bonnet theory in lower dimensions *
H. Lü; Pujian Mao
<jats:title>Abstract</jats:title> <jats:p>Recently, an action principle for the <jats:inline-formula> <jats:tex-math><?CDATA $D\rightarrow4$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013110_M1.jpg" xlink:type="simple" /> </jats:inline-formula> limit of Einstein-Gauss-Bonnet gravity has been proposed. It is a special scalar-tensor theory that belongs to the family of Horndeski gravity. It also has well defined <jats:inline-formula> <jats:tex-math><?CDATA $D\rightarrow3$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013110_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $D\rightarrow2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013110_M3.jpg" xlink:type="simple" /> </jats:inline-formula> limits. In this work, we examine this theory in three and four dimensions in the Bondi-Sachs framework. In both three and four dimensions, we find that there is no news function associated with the scalar field, which means that there is no scalar propagating degree of freedom in the theory. In four dimensions, the mass-loss formula is not affected by the Gauss-Bonnet term. This is consistent with the fact that there is no scalar radiation. However, the effects of the Gauss-Bonnet term are quite significant in the sense that they arise just one order after the integration constants and also arise in the quadrupole of the gravitational source. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 013110
Holographic Schwinger effect in a soft wall AdS/QCD model *
Yue Ding; Zi-qiang Zhang
<jats:title>Abstract</jats:title> <jats:p>We perform a potential analysis for the holographic Schwinger effect in a deformed <jats:inline-formula> <jats:tex-math><?CDATA $ AdS_5 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013111_M1.jpg" xlink:type="simple" /> </jats:inline-formula> model with conformal invariance broken by a background dilaton. We evaluated the static potential by analyzing the classical action of a string attached to a rectangular Wilson loop on a probe D3 brane located at an intermediate position in the bulk AdS space. We observed that the inclusion of the chemical potential tends to enhance the production rate, which is opposite to the effect of the confining scale. In addition, we calculated the critical electric field based on the Dirac-Born-Infeld (DBI) action. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 013111
Strangeonium-like hybrids on the lattice *
Yunheng Ma; Ying Chen; Ming Gong; Zhaofeng Liu
<jats:title>Abstract</jats:title> <jats:p>The strangeonium-like <jats:inline-formula> <jats:tex-math><?CDATA $s\bar{s}g$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M1.jpg" xlink:type="simple" /> </jats:inline-formula> hybrids are investigated from lattice QCD in the quenched approximation. In the Coulomb gauge, spatially extended operators are constructed for <jats:inline-formula> <jats:tex-math><?CDATA $1^{--}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $(0,1,2)^{-+}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M3.jpg" xlink:type="simple" /> </jats:inline-formula> states with the color octet <jats:inline-formula> <jats:tex-math><?CDATA $s\bar{s}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M4.jpg" xlink:type="simple" /> </jats:inline-formula> component being separated from the chromomagnetic field strength by the spatial distance <jats:inline-formula> <jats:tex-math><?CDATA $r$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, whose matrix elements between the vacuum and the corresponding states are interpreted as Bethe-Salpeter (BS) wave functions. In each of the <jats:inline-formula> <jats:tex-math><?CDATA $(1,2)^{-+}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M6.jpg" xlink:type="simple" /> </jats:inline-formula> channels, the masses and the BS wave functions are reliably derived. The <jats:inline-formula> <jats:tex-math><?CDATA $1^{-+}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M7.jpg" xlink:type="simple" /> </jats:inline-formula> ground state mass is approximately 2.1-2.2 GeV, and that of <jats:inline-formula> <jats:tex-math><?CDATA $2^{-+}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M8.jpg" xlink:type="simple" /> </jats:inline-formula> is approximately 2.3-2.4 GeV, whereas the mass of the first excited state is approximately 1.4 GeV higher. This mass splitting is much larger compared to that expected based on the phenomenological flux-tube model or constituent gluon model for hybrids, which is usually a few hundred MeV. The BS wave functions with respect to <jats:inline-formula> <jats:tex-math><?CDATA $r$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M9.jpg" xlink:type="simple" /> </jats:inline-formula>exhibit clear radial nodal structures of a non-relativistic two-body system, which imply that <jats:inline-formula> <jats:tex-math><?CDATA $r$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M10.jpg" xlink:type="simple" /> </jats:inline-formula> is a meaningful dynamical variable for these hybrids and motivate a color halo picture of hybrids, in which the color octet <jats:inline-formula> <jats:tex-math><?CDATA $s\bar{s}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M11.jpg" xlink:type="simple" /> </jats:inline-formula> is surrounded by gluonic degrees of freedom. In the <jats:inline-formula> <jats:tex-math><?CDATA $1^{--}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M12.jpg" xlink:type="simple" /> </jats:inline-formula> channel, the properties of the lowest two states are consistent with those of <jats:inline-formula> <jats:tex-math><?CDATA $\phi(1020)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M13.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\phi(1680)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M14.jpg" xlink:type="simple" /> </jats:inline-formula>. We did not obtain convincing information with respect to <jats:inline-formula> <jats:tex-math><?CDATA $\phi(2170)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M15.jpg" xlink:type="simple" /> </jats:inline-formula>. However, we argue that regardless of whether <jats:inline-formula> <jats:tex-math><?CDATA $\phi(2170)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M16.jpg" xlink:type="simple" /> </jats:inline-formula> is a conventional <jats:inline-formula> <jats:tex-math><?CDATA $s\bar{s}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M17.jpg" xlink:type="simple" /> </jats:inline-formula> meson or a <jats:inline-formula> <jats:tex-math><?CDATA $s\bar{s}g$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M18.jpg" xlink:type="simple" /> </jats:inline-formula> hybrid in the color halo scenario, the ratio of partial decay widths <jats:inline-formula> <jats:tex-math><?CDATA $\Gamma(\phi \eta)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M19.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\Gamma (\phi \eta')$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M20.jpg" xlink:type="simple" /> </jats:inline-formula> observed by BESIII can be understood based on the mechanism of hadronic transition of a strangeonium-like meson in addition to <jats:inline-formula> <jats:tex-math><?CDATA $\eta-\eta'$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013112_M21.jpg" xlink:type="simple" /> </jats:inline-formula> mixing. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 013112
Effects of vector leptoquarks on decay
K. Azizi; A. T. Olgun; Z. Tavukoğlu
<jats:title>Abstract</jats:title> <jats:p>Experimental data on <jats:inline-formula> <jats:tex-math><?CDATA $ R(D^{(*)}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ R(K^{(*)}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M3.jpg" xlink:type="simple" /> </jats:inline-formula> , and <jats:inline-formula> <jats:tex-math><?CDATA $ R(J/\psi) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, provided by different collaborations, show sizable deviations from the standard model predictions. To describe these anomalies, many new physics scenarios have been proposed. One of them is the leptoquark model, which introduces the simultaneous coupling of vector and scalar leptoquarks to quarks and leptons. To look for similar possible anomalies in the baryonic sector, we investigate the effects of a vector leptoquark <jats:inline-formula> <jats:tex-math><?CDATA $U_3 (3,3, \frac{2}{3})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M5.jpg" xlink:type="simple" /> </jats:inline-formula> on various physical quantities related to the tree-level <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_b \rightarrow \Lambda_c \ell ~ \overline{\nu}_\ell$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M6.jpg" xlink:type="simple" /> </jats:inline-formula> decays ( <jats:inline-formula> <jats:tex-math><?CDATA $ \ell=\mu, ~\tau $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M7.jpg" xlink:type="simple" /> </jats:inline-formula>), which proceed via <jats:inline-formula> <jats:tex-math><?CDATA $ b \rightarrow c~\ell ~ \overline{\nu}_\ell$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M8.jpg" xlink:type="simple" /> </jats:inline-formula> transitions at the quark level. We calculate the differential branching ratio, forward-backward asymmetry, and longitudinal polarizations of leptons and <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda_{c}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M9.jpg" xlink:type="simple" /> </jats:inline-formula> baryons at the <jats:inline-formula> <jats:tex-math><?CDATA $ \mu $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M10.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \tau $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M11.jpg" xlink:type="simple" /> </jats:inline-formula> lepton channels in the leptoquark model and compare their behavior to the predictions of the SM in terms of <jats:inline-formula> <jats:tex-math><?CDATA $ q^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M12.jpg" xlink:type="simple" /> </jats:inline-formula>. In the calculations, we use the form factors calculated in full QCD as the main input and account for all errors coming from the form factors and model parameters. We observe that at the <jats:inline-formula> <jats:tex-math><?CDATA $ \tau $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M13.jpg" xlink:type="simple" /> </jats:inline-formula> channel, the <jats:inline-formula> <jats:tex-math><?CDATA $ R_A $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M14.jpg" xlink:type="simple" /> </jats:inline-formula> fit solution to data related to the leptoquark model sweeps some regions out of the SM band; nevertheless, the fit has a considerable intersection with the SM predictions. The <jats:inline-formula> <jats:tex-math><?CDATA $ R_B$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M15.jpg" xlink:type="simple" /> </jats:inline-formula> type solution gives roughly the same results as the SM on <jats:inline-formula> <jats:tex-math><?CDATA $ DBR(q^2)-q^2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M16.jpg" xlink:type="simple" /> </jats:inline-formula>. At the <jats:inline-formula> <jats:tex-math><?CDATA $ \mu $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M17.jpg" xlink:type="simple" /> </jats:inline-formula> channel, the leptoquark model gives results that are consistent with the SM predictions and existing experimental data on the behavior of <jats:inline-formula> <jats:tex-math><?CDATA $ DBR(q^2)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M18.jpg" xlink:type="simple" /> </jats:inline-formula> with respect to <jats:inline-formula> <jats:tex-math><?CDATA $ q^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M19.jpg" xlink:type="simple" /> </jats:inline-formula>. Concerning the <jats:inline-formula> <jats:tex-math><?CDATA $ q^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M20.jpg" xlink:type="simple" /> </jats:inline-formula> behavior of the <jats:inline-formula> <jats:tex-math><?CDATA $ A_{FB}(q^2) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M21.jpg" xlink:type="simple" /> </jats:inline-formula> , the two types of fits for <jats:inline-formula> <jats:tex-math><?CDATA $ \tau $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M22.jpg" xlink:type="simple" /> </jats:inline-formula> and the predictions at the <jats:inline-formula> <jats:tex-math><?CDATA $ \mu $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M23.jpg" xlink:type="simple" /> </jats:inline-formula> channel in the leptoquark model give exactly the same results as the SM. We also investigate the behavior of the parameter <jats:inline-formula> <jats:tex-math><?CDATA $ R(q^2) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M24.jpg" xlink:type="simple" /> </jats:inline-formula> with respect to <jats:inline-formula> <jats:tex-math><?CDATA $ q^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M25.jpg" xlink:type="simple" /> </jats:inline-formula> and the value of <jats:inline-formula> <jats:tex-math><?CDATA $ R(\Lambda_c) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M26.jpg" xlink:type="simple" /> </jats:inline-formula> in both the vector leptoquark and SM models. Both fit solutions lead to results that deviate considerably from the SM predictions for <jats:inline-formula> <jats:tex-math><?CDATA $R(q^2)- q^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M27.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ R(\Lambda_c) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M28.jpg" xlink:type="simple" /> </jats:inline-formula>. Future experimental data on <jats:inline-formula> <jats:tex-math><?CDATA $R(q^2)- q^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M29.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ R(\Lambda_c) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M30.jpg" xlink:type="simple" /> </jats:inline-formula>, made available by measurements of the <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_b \rightarrow \Lambda_c \tau ~ \overline{\nu}_\tau$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013113_M31.jpg" xlink:type="simple" /> </jats:inline-formula> channel, will be particularly helpful. Any experimental deviations from the SM predictions in this channel would emphasize the importance of tree-level hadronic weak transitions as good probes of new physics effects beyond the SM. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 013113
On-shell mediator dark matter models and the Xenon1T excess *
Mingxuan Du; Jinhan Liang; Zuowei Liu; Van Que Tran; Yilun Xue
<jats:title>Abstract</jats:title> <jats:p>We present a dark matter model to explain the excess events in the electron recoil data recently reported by the Xenon1T experiment. In our model, dark matter <jats:inline-formula> <jats:tex-math><?CDATA $\chi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013114_M1.jpg" xlink:type="simple" /> </jats:inline-formula> annihilates into a pair of on-shell particles <jats:inline-formula> <jats:tex-math><?CDATA $\phi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013114_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, which subsequently decay into the <jats:inline-formula> <jats:tex-math><?CDATA $\psi \psi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013114_M3.jpg" xlink:type="simple" /> </jats:inline-formula> final state; <jats:inline-formula> <jats:tex-math><?CDATA $\psi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013114_M4.jpg" xlink:type="simple" /> </jats:inline-formula> interacts with electrons to generate the observed excess events. Because of the mass hierarchy, the velocity of <jats:inline-formula> <jats:tex-math><?CDATA $\psi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013114_M5.jpg" xlink:type="simple" /> </jats:inline-formula> can be rather large and can have an extended distribution, providing a good fit to the electron recoil energy spectrum. We estimate the flux of <jats:inline-formula> <jats:tex-math><?CDATA $\psi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013114_M6.jpg" xlink:type="simple" /> </jats:inline-formula> from dark matter annihilations in the galaxy and further determine the interaction cross section, which is sizable but sufficiently small to allow <jats:inline-formula> <jats:tex-math><?CDATA $\psi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013114_M7.jpg" xlink:type="simple" /> </jats:inline-formula> to penetrate the rocks to reach the underground labs. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 013114
Calculation of Feynman loop integration and phase-space integration via auxiliary mass flow *
Xiao Liu; Yan-Qing Ma; Wei Tao; Peng Zhang
<jats:title>Abstract</jats:title> <jats:p>We extend the auxiliary-mass-flow (AMF) method originally developed for Feynman loop integration to calculate integrals which also involve phase-space integration. The flow of the auxiliary mass from the boundary ( <jats:inline-formula> <jats:tex-math><?CDATA $\infty$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013115_M1.jpg" xlink:type="simple" /> </jats:inline-formula>) to the physical point ( <jats:inline-formula> <jats:tex-math><?CDATA $0^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013115_M2.jpg" xlink:type="simple" /> </jats:inline-formula>) is obtained by numerically solving differential equations with respective to the auxiliary mass. For problems with two or more kinematical invariants, the AMF method can be combined with the traditional differential-equation method, providing systematic boundary conditions and a highly nontrivial self-consistency check. The method is described in detail using a pedagogical example of <jats:inline-formula> <jats:tex-math><?CDATA $e^+e^-\rightarrow \gamma^* \rightarrow t\bar{t}+X$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013115_M3.jpg" xlink:type="simple" /> </jats:inline-formula> at NNLO. We show that the AMF method can systematically and efficiently calculate integrals to high precision. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 013115
The entanglement properties of holographic QCD model with a critical end point *
Zhibin Li; Kun Xu; Mei Huang
<jats:title>Abstract</jats:title> <jats:p>We investigated different entanglement properties of a holographic QCD (hQCD) model with a critical end point at the finite baryon density. Firstly, we considered the holographic entanglement entropy (HEE) of this hQCD model in a spherical shaped region and a strip shaped region. It was determined that the HEE of this hQCD model in both regions can reflect QCD phase transition. Moreover, although the area formulas and minimal area equations of the two regions were quite different, the HEE exhibited a similar behavior on the QCD phase diagram. Therefore, we assert that the behavior of the HEE on the QCD phase diagram is independent of the shape of the subregions. However, the HEE is not an ideal parameter for the characterization of the entanglement between different subregions of a thermal system. As such, we investigated the mutual information (MI), conditional mutual information (CMI), and the entanglement of purification (Ep) in different strip shaped regions. We determined that the three entanglement quantities exhibited some universal behavior; their values did not change significantly in the hadronic matter phase but increased rapidly with the increase in <jats:italic>T</jats:italic> and <jats:inline-formula> <jats:tex-math><?CDATA $ \mu$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013116_M1.jpg" xlink:type="simple" /> </jats:inline-formula> in the QGP phase. Near the phase boundary, these three entanglement quantities changed smoothly in the crossover region and continuously but not smoothly at CEP; they exhibited discontinuous behavior in the first phase transition region. These properties can be used to distinguish between the different phases of strongly coupled matter. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 013116
Complete study on polarization of hadroproduction at QCD next-to-leading order *
Yu Feng; Bin Gong; Chao-Hsi Chang; Jian-Xiong Wang
<jats:title>Abstract</jats:title> <jats:p>By applying the nonrelativistic quantum chromodynamics factorization formalism to <jats:inline-formula> <jats:tex-math><?CDATA $ \Upsilon(1S,2S,3S) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013117_M2.jpg" xlink:type="simple" /> </jats:inline-formula> hadroproduction, a complete analysis of the polarization parameters <jats:inline-formula> <jats:tex-math><?CDATA $ \lambda_{\theta} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013117_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \lambda_{\theta\phi} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013117_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ \lambda_{\phi} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013117_M5.jpg" xlink:type="simple" /> </jats:inline-formula> for the production is presented at QCD next-to-leading order. With the long-distance matrix elements extracted from experimental data for the production rate and polarization parameter <jats:inline-formula> <jats:tex-math><?CDATA $ \lambda_{\theta} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013117_M6.jpg" xlink:type="simple" /> </jats:inline-formula> of <jats:inline-formula> <jats:tex-math><?CDATA $ \Upsilon $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013117_M7.jpg" xlink:type="simple" /> </jats:inline-formula> hadroproduction, our results provide a good description of the measured parameters <jats:inline-formula> <jats:tex-math><?CDATA $ \lambda_{\theta\phi} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013117_M8.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \lambda_{\phi} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013117_M9.jpg" xlink:type="simple" /> </jats:inline-formula> in both the helicity and Collins-Soper frames. In our calculations, the frame invariant parameter <jats:inline-formula> <jats:tex-math><?CDATA $ \tilde{\lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013117_M10.jpg" xlink:type="simple" /> </jats:inline-formula> is consistent in the two frames. Finally, we mention that there are discrepancies between the available experimental data and corresponding theoretical predictions for <jats:inline-formula> <jats:tex-math><?CDATA $ \tilde{\lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013117_M11.jpg" xlink:type="simple" /> </jats:inline-formula> . </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 013117
Theory for quarkonium: from NRQCD factorization to soft gluon factorization *
An-Ping Chen; Yan-Qing Ma
<jats:title>Abstract</jats:title> <jats:p>We demonstrate that the recently proposed soft gluon factorization (SGF) is equivalent to the nonrelativistic QCD (NRQCD) factorization for heavy quarkonium production or decay, which means that, for any given process, these two factorization theories are either both valid or both violated. We use two methods to arrive at this conclusion. In the first method, we apply the two factorization theories to the physical process <jats:inline-formula> <jats:tex-math><?CDATA $J/\psi \to e^+e^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_1_013118_M.jpg" xlink:type="simple" /> </jats:inline-formula>. Our explicit calculation shows that both SGF and NRQCD can correctly reproduce the low energy physics of full QCD, and the two factorizations are thus equivalent. In the second method, by using equations of motion, we successfully deduce SGF from NRQCD effective field theory. By identifying SGF with NRQCD factorization, we establish relations between the two factorization theories and prove the generalized Gremm-Kapustin relation as a byproduct. Compared with the NRQCD factorization, the advantage of SGF is that it resums the series of relativistic corrections originating from kinematic effects to all powers, yielding better convergence of the relativistic expansion. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 013118