Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Ξbb and Ωbbb molecular states *

J. M. Dias; Qi-Xin Yu; Wei-Hong Liang; Zhi-Feng Sun; Ju-Jun Xie; E. Oset

<jats:title>Abstract</jats:title> <jats:p>Using the vector exchange interaction in the local hidden gauge approach, which in the light quark sector generates the chiral Lagrangians and has produced realistic results for <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_c, \Xi_c, \Xi_b$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and the hidden charm pentaquark states, we study the meson-baryon interactions in the coupled channels that lead to the <jats:inline-formula> <jats:tex-math><?CDATA $\Xi_{bb}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064101_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{bbb}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064101_M3.jpg" xlink:type="simple" /> </jats:inline-formula> excited states of the molecular type. We obtain seven states of the <jats:inline-formula> <jats:tex-math><?CDATA $\Xi_{bb}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064101_M4.jpg" xlink:type="simple" /> </jats:inline-formula> type with energies between <jats:inline-formula> <jats:tex-math><?CDATA $10408$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064101_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $10869$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064101_M6.jpg" xlink:type="simple" /> </jats:inline-formula> MeV, and one <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{bbb}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064101_M7.jpg" xlink:type="simple" /> </jats:inline-formula> state at <jats:inline-formula> <jats:tex-math><?CDATA $15212$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064101_M8.jpg" xlink:type="simple" /> </jats:inline-formula> MeV. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064101

Exact solution of U(5)–O(6) transitional description in interacting boson model with two-particle and two-hole configuration mixing *

Lianrong Dai; Feng Pan; Ziwei Feng; Yu Zhang; Sai Cui; J. P. Draayer

<jats:title>Abstract</jats:title> <jats:p>The exact solution of the <jats:italic>U</jats:italic>(5)-<jats:italic>O</jats:italic>(6) transitional description in the interacting boson model with two-particle and two-hole configuration mixing is derived based on the Bethe ansatz approach. The Bethe ansatz equations are provided to determine the model's eigenstates and corresponding eigen-energies. <jats:italic>N</jats:italic>= 2 and <jats:italic>N</jats:italic>= 4 cases are considered as examples to demonstrate the solution features. As an example of the application, some low-lying level energies and <jats:italic>B</jats:italic>(<jats:italic>E</jats:italic>2) ratios of <jats:sup>108</jats:sup>Cd are fitted and compared with the corresponding experimental data. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064102

Key factor for determining relation between radius and tidal deformability of neutron stars: Slope of symmetry energy *

Nai-Bo Zhang; Bin Qi; Shou-Yu Wang

<jats:title>Abstract</jats:title> <jats:p>The constraints on tidal deformability <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> of neutron stars were first extracted from GW170817 by LIGO and Virgo Collaborations. However, the relationship between the radius <jats:inline-formula> <jats:tex-math><?CDATA $ R $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and tidal deformability <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M3.jpg" xlink:type="simple" /> </jats:inline-formula> is still under debate. Using an isospin-dependent parameterized equation of state (EOS), we study the relation between <jats:inline-formula> <jats:tex-math><?CDATA $ R $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and its dependence on parameters of symmetry energy <jats:inline-formula> <jats:tex-math><?CDATA $ E_{\rm sym} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and EOS of symmetric nuclear matter <jats:inline-formula> <jats:tex-math><?CDATA $ E_0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M7.jpg" xlink:type="simple" /> </jats:inline-formula> when the mass is fixed at <jats:inline-formula> <jats:tex-math><?CDATA $ 1.4 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M8.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ 1.0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M10.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ 1.8 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M12.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M13.jpg" xlink:type="simple" /> </jats:inline-formula>. We find that, although the changes of high order parameters of <jats:inline-formula> <jats:tex-math><?CDATA $ E_{\rm sym} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M14.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ E_0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M15.jpg" xlink:type="simple" /> </jats:inline-formula> can shift individual values of <jats:inline-formula> <jats:tex-math><?CDATA $ R_{1.4} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M16.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{1.4} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M17.jpg" xlink:type="simple" /> </jats:inline-formula>, the <jats:inline-formula> <jats:tex-math><?CDATA $ R_{1.4}\sim\Lambda_{1.4} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M18.jpg" xlink:type="simple" /> </jats:inline-formula> relation remains approximately at the same fitted curve. The slope <jats:inline-formula> <jats:tex-math><?CDATA $ L $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M19.jpg" xlink:type="simple" /> </jats:inline-formula> of the symmetry energy plays the dominant role in determining the <jats:inline-formula> <jats:tex-math><?CDATA $ R_{1.4}\sim\Lambda_{1.4} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M20.jpg" xlink:type="simple" /> </jats:inline-formula> relation. By investigating the mass dependence of the <jats:inline-formula> <jats:tex-math><?CDATA $ R\sim\Lambda $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M21.jpg" xlink:type="simple" /> </jats:inline-formula> relation, we find that the well fitted <jats:inline-formula> <jats:tex-math><?CDATA $ R\sim\Lambda $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M22.jpg" xlink:type="simple" /> </jats:inline-formula> relation for 1.4 <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_064103_M23.jpg" xlink:type="simple" /> </jats:inline-formula> is broken for massive neutron stars. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064103

Hadronic spectra from deformed AdS backgrounds *

Eduardo Folco Capossoli; Miguel Angel Martín Contreras; Danning Li; Alfredo Vega; Henrique Boschi-Filho

<jats:title>Abstract</jats:title> <jats:p>Because of the presence of modified warp factors in metric tensors, we use deformed <jats:italic>AdS</jats:italic> <jats:sub>5</jats:sub> spaces to apply the AdS/CFT correspondence to calculate the spectra for even and odd glueballs, scalar and vector mesons, and baryons with different spins. For the glueball cases, we derive their Regge trajectories and compare them with those related to the pomeron and the odderon. For the scalar and vector mesons, as well as baryons, the determined masses are compatible with the PDG. In particular, for these hadrons we found Regge trajectories compatible with another holographic approach as well as with the hadronic spectroscopy, which present an universal Regge slope of approximately 1.1 GeV<jats:sup>2</jats:sup>. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064104

Prospects for a multi-TeV gamma-ray sky survey with the LHAASO water Cherenkov detector array *

F. Aharonian; V. Alekseenko; Q. An; Axikegu; L.X. Bai; Y.W. Bao; D. Bastieri; X.J. Bi; H. Cai; Zhe Cao; Zhen Cao; J. Chang; J.F. Chang; X.C. Chang; S.P. Chao; B.M. Chen; J. Chen; L. Chen; L. Chen; M.L. Chen; M.J. Chen; Q.H. Chen; S.H. Chen; S.Z. Chen; T.L. Chen; X.L. Chen; Y. Chen; N. Cheng; Y.D. Cheng; S.W. Cui; X.H. Cui; Y.D. Cui; B.Z. Dai; H.L. Dai; Z.G. Dai; Danzengluobu; B. D'Ettorre Piazzoli; J. Fang; J.H. Fan; Y.Z. Fan; C.F Feng; L. Feng; S.H. Feng; Y.L. Feng; B. Gao; Q. Gao; W. Gao; M.M. Ge; L.S. Geng; G.H. Gong; Q.B. Gou; M.H. Gu; Y.Q. Guo; Y.Y. Guo; Y.A. Han; H.H. He; J.C. He; M. Heller; S.L. He; Y. He; C. Hou; D.H. Huang; Q.L. Huang; W.H. Huang; X.T. Huang; H.B. Hu; S. Hu; H.Y. Jia; K. Jiang; F. Ji; C. Jin; X.L. Ji; K. Levochkin; E.W. Liang; Y.F Liang; Cheng Li; Cong Li; F. Li; H. Li; H.B. Li; H.C. Li; H.M. Li; J. Li; K. Li; W.L. Li; X. Li; X.R. Li; Y. Li; Z. Li; Z. Li; B. Liu; C. Liu; D. Liu; H.D. Liu; H. Liu; J. Liu; J.Y. Liu; M.Y. Liu; R.Y. Liu; S.M. Liu; W. Liu; Y.N. Liu; Z.X. Liu; W.J. Long; R. Lu; H.K. Lv; B.Q. Ma; L.L. Ma; J.R. Mao; A. Masood; X.H. Ma; W. Mitthumsiri; T. Montaruli; Y.C. Nan; P. Pattarakijwanich; Z.Y. Pei; B.Q. Qiao; M.Y. Qi; D. Ruffolo; V. Rulev; A. Sáiz; L. Shao; O. Shchegolev; X.D. Sheng; J.R. Shi; Y. Stenkin; V. Stepanov; Z.B. Sun; P.H.T. Tam; Z.B. Tang; W.W. Tian; D.D. Volpe; C. Wang; H. Wang; H.G. Wang; J.C. Wang; L.Y. Wang; W. Wang; W. Wang; X.G. Wang; X.Y. Wang; X.J. Wang; Y.D. Wang; Y.J. Wang; Y.N. Wang; Y.P. Wang; Z. Wang; Z.H. Wang; Z.X. Wang; D.M. Wei; J.J. Wei; T. Wen; C.Y. Wu; H.R. Wu; S. Wu; W.X. Wu; X.F. Wu; G.M. Xiang; G. Xiao; G.G. Xin; Y. Xing; R.X. Xu; L. Xue; D.H. Yan; C.W. Yang; F.F. Yang; L.L. Yang; M.J. Yang; R.Z. Yang; S.B. Yang; Y.H. Yao; Z.G. Yao; Y.M. Ye; L.Q. Yin; N. Yin; X.H. You; Z.Y. You; Q. Yuan; Y.H. Yu; Z.J. Jiang; H.D. Zeng; T.X. Zeng; W. Zeng; Z.K. Zeng; M. Zha; B.B. Zhang; H.M. Zhang; H.Y. Zhang; J.L. Zhang; J.W. Zhang; L. Zhang; P.F. Zhang; P.P. Zhang; S.R. Zhang; S.S. Zhang; X. Zhang; X.P. Zhang; Yi Zhang; Yong Zhang; Y.F.g Zhang; B. Zhao; J. Zhao; L. Zhao; L.Z. Zhao; F. Zheng; Y. Zheng; J.N. Zhou; P. Zhou; R. Zhou; X.X. Zhou; C.G. Zhu; F.R. Zhu; H. Zhu; K.J. Zhu; X. Zuo

<jats:title>Abstract</jats:title> <jats:p>The Water Cherenkov Detector Array (WCDA) is a major component of the Large High Altitude Air Shower Array Observatory (LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV <jats:inline-formula> <jats:tex-math><?CDATA $\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_065001_M1.jpg" xlink:type="simple" /> </jats:inline-formula>-rays. In order to evaluate the prospects of searching for TeV <jats:inline-formula> <jats:tex-math><?CDATA $\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_065001_M2.jpg" xlink:type="simple" /> </jats:inline-formula>-ray sources with WCDA, we present a projection of the one-year sensitivity of WCDA to TeV <jats:inline-formula> <jats:tex-math><?CDATA $\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_065001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>-ray sources from TeVCat using an all-sky approach. Out of 128 TeVCat sources observable by WCDA up to a zenith angle of <jats:inline-formula> <jats:tex-math><?CDATA $45^\circ$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_065001_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, we estimate that 42 would be detectable in one year of observations at a median energy of 1 TeV. Most of them are Galactic sources, and the extragalactic sources are Active Galactic Nuclei (AGN). </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 065001

Classifying cosmic-ray proton and light groups in LHAASO-KM2A experiment with graph neural network *

Chao Jin; Song-zhan Chen; Hui-hai He; (for the LHAASO Collaboration)

<jats:title>Abstract</jats:title> <jats:p>The precise measurement of cosmic-ray (CR) knees of different primaries is essential to reveal CR acceleration and propagation mechanisms, as well as to explore new physics. However, the classification of CR components is a difficult task, especially for groups with similar atomic numbers. Given that deep learning achieved remarkable breakthroughs in numerous fields, we seek to leverage this technology to improve the classification performance of the CR Proton and Light groups in the LHAASO-KM2A experiment. In this study, we propose a fused graph neural network model for KM2A arrays, where the activated detectors are structured into graphs. We find that the signal and background are effectively discriminated in this model, and its performance outperforms both the traditional physics-based method and the convolutional neural network (CNN)-based model across the entire energy range.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 065002

Gyroscope precession frequency analysis of a five-dimensional charged rotating Kaluza-Klein black hole

Mustapha Azreg-Aïnou; Mubasher Jamil; Kai Lin

<jats:title>Abstract</jats:title> <jats:p>We study the spin precession frequency of a test gyroscope attached to a stationary observer in the five-dimensional rotating Kaluza-Klein black hole (RKKBH). We derive the conditions under which the test gyroscope moves along a timelike trajectory in this geometry, and the regions where the spin precession frequency diverges. The magnitude of the gyroscope precession frequency around the KK black hole diverges at two spatial locations outside the event horizon. However, in the static case, the behavior of the Lense-Thirring frequency of a gyroscope around the KK black hole is similar to the ordinary Schwarzschild black hole. Since a rotating Kaluza-Klein black hole is a generalization of the Kerr-Newman black hole, we present two mass-independent schemes to distinguish these two spacetimes.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 065101

Accretion on high derivative asymptotically safe black holes *

M. Umar Farooq; Ayyesha K. Ahmed; Rong-Jia Yang; Mubasher Jamil

<jats:title>Abstract</jats:title> <jats:p>Asymptotically safe gravity is an effective approach to quantum gravity. It is important to differentiate modified gravity, which is inspired by asymptotically safe gravity. In this study, we examine particle dynamics near the improved version of a Schwarzschild black hole. We assume that in the context of an asymptotically safe gravity scenario, the ambient matter surrounding the black hole is of isothermal nature, and we investigate the spherical accretion of matter by deriving solutions at critical points. The analysis of various values of the state parameter for isothermal test fluids, viz., <jats:italic>k</jats:italic> = 1, 1/2, 1/3, 1/4 show the possibility of accretion onto an asymptotically safe black hole. We formulate the accretion problem as Hamiltonian dynamical system and explain its phase flow in detail, which reveals interesting results in the asymptotically safe gravity theory. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 065102

Cosmological scenario based on particle creation and holographic equipartition *

Fei-Quan Tu; Yi-Xin Chen; Qi-Hong Huang

<jats:title>Abstract</jats:title> <jats:p>We propose a cosmological scenario that describes the evolution of the universe based on particle creation and holographic equipartition. The model attempts to solve the inflation of the early universe and the accelerated expansion of the present universe without introducing the dark energy from the thermodynamical perspective. Throughout the evolution of the universe, we assume that the universe consistently creates particles, and that the holographic equipartition is always satisfied. Further, we set the creation rate of particles proportional to <jats:inline-formula> <jats:tex-math><?CDATA $ H^{2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_065103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> in the early universe and to <jats:italic>H</jats:italic> in the present and late universe, where <jats:italic>H</jats:italic> depicts the Hubble parameter. Consequently, we obtain the solutions <jats:inline-formula> <jats:tex-math><?CDATA $ a(t)\propto {\rm e}^{\alpha t/3} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_065103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ a(t)\propto t^{1/2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_065103_M5.jpg" xlink:type="simple" /> </jats:inline-formula> for the early universe and solutions <jats:inline-formula> <jats:tex-math><?CDATA $ a(t)\propto t^{\delta} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_065103_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ a(t)\propto {\rm e}^{Ht} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_065103_M7.jpg" xlink:type="simple" /> </jats:inline-formula> for the present and late universe, respectively, where <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_065103_M8.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \delta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_065103_M9.jpg" xlink:type="simple" /> </jats:inline-formula> are the parameters. Finally, we obtain and analyze two important thermodynamic properties for the present model. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 065103

Collision of spinning particles near BTZ black holes *

Xulong Yuan; Yunlong Liu; Xiangdong Zhang

<jats:title>Abstract</jats:title> <jats:p>We study the collision property of spinning particles near a Bañados-Teitelboim-Zanelli (BTZ) black hole. Our results show that although the center-of-mass energy of two ingoing particles diverges if one of the particles possesses a critical angular momentum, the particle with critical angular momentum cannot exist outside of the horizon due to violation of the timelike constraint. Further detailed investigation indicates that only a particle with a subcritical angular momentum is allowed to exist near an extremal rotating BTZ black hole, and the corresponding collision center-of-mass energy can be arbitrarily large in a critical angular momentum limit.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 065104