Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

High-K multi-particle bands and pairing reduction in 254No *

Xiao-Tao He; Shu-Yong Zhao; Zhen-Hua Zhang; Zhong-Zhou Ren

<jats:title>Abstract</jats:title> <jats:p>The multi-particle states and rotational properties of the two-particle bands in <jats:inline-formula> <jats:tex-math><?CDATA $^{254}{\rm{No}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034106_M1.jpg" xlink:type="simple" /> </jats:inline-formula> are investigated by the cranked shell model with pairing correlations treated by the particle number conserving method. The rotational bands on top of the two-particle <jats:inline-formula> <jats:tex-math><?CDATA $K^{\pi}=3^+, \;8^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034106_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $10^+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034106_M3.jpg" xlink:type="simple" /> </jats:inline-formula> states and the pairing reduction are studied theoretically in <jats:inline-formula> <jats:tex-math><?CDATA $^{254}{\rm{No}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034106_M4.jpg" xlink:type="simple" /> </jats:inline-formula> for the first time. The experimental excitation energies and moments of inertia of the multi-particle states are reproduced well by the calculations. Better agreement with the data is achieved by including the high-order deformation <jats:inline-formula> <jats:tex-math><?CDATA $\varepsilon_{6}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034106_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, which leads to enlarged <jats:inline-formula> <jats:tex-math><?CDATA $Z=100$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034106_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $N=152$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034106_M7.jpg" xlink:type="simple" /> </jats:inline-formula> deformed shell gaps. An increase of <jats:inline-formula> <jats:tex-math><?CDATA $J^{(1)}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034106_M8.jpg" xlink:type="simple" /> </jats:inline-formula> in these two-particle bands compared with the ground state band is attributed to the pairing reduction due to the Pauli blocking effect. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 034106

K* production in the KN → Kπp reaction *

Shao-Fei Chen; Bo-Chao Liu

<jats:title>Abstract</jats:title> <jats:p>We investigate the <jats:inline-formula> <jats:tex-math><?CDATA $ K^* $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034107_M3.jpg" xlink:type="simple" /> </jats:inline-formula> production in the <jats:inline-formula> <jats:tex-math><?CDATA $ KN\to K \pi p $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034107_M4.jpg" xlink:type="simple" /> </jats:inline-formula> reaction using the effective Lagrangian approach and the isobar model. To describe this reaction, we first take into account the contributions from the <jats:inline-formula> <jats:tex-math><?CDATA $ \pi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034107_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \rho $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034107_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \omega $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034107_M7.jpg" xlink:type="simple" /> </jats:inline-formula> exchanges, as in previous studies. We find that although the experimental data can be generally described, there are some obvious discrepancies between the model and the experiments. To improve the model, we consider the contributions of the axial-vector meson and hyperon exchange. It is shown that a large contribution of the axial-vector meson exchange can significantly improve the results. This may indicate that the coupling of the axial-vector meson, e.g. <jats:inline-formula> <jats:tex-math><?CDATA $ a_1(1260) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034107_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, is large in the <jats:inline-formula> <jats:tex-math><?CDATA $ KK^* $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034107_M9.jpg" xlink:type="simple" /> </jats:inline-formula> channel. To verify our model, measurements of the angular distributions and spin density matrix elements of <jats:inline-formula> <jats:tex-math><?CDATA $ K^{*0} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034107_M10.jpg" xlink:type="simple" /> </jats:inline-formula> in the <jats:inline-formula> <jats:tex-math><?CDATA $ K_{\rm L} p\to K^{*0} p $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034107_M11.jpg" xlink:type="simple" /> </jats:inline-formula> reaction would be helpful, and we make predictions for this reaction for a future comparison. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 034107

Phase diagram of two-color QCD matter at finite baryon and axial isospin densities *

Jingyi Chao

<jats:title>Abstract</jats:title> <jats:p>We study the two-color QCD matter with two fundamental quark flavors using the chiral perturbation theory and the Nambu-Jona-Lasinio (NJL) model. The effective Lagrangian is derived in terms of mesons and baryons, <jats:italic>i.e.</jats:italic> diquarks. The low lying excitations lie in the extended <jats:inline-formula> <jats:tex-math><?CDATA $ {SU}(4)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034108_M1.jpg" xlink:type="simple" /> </jats:inline-formula> flavor symmetry space. We compute the leading order terms of the Lagrangian as a function of the baryon and axial isospin densities. After numerically solving the gap equations in the two-color NJL model, the phase diagram is obtained in the <jats:inline-formula> <jats:tex-math><?CDATA $\mu-\nu_{5}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_034108_M2.jpg" xlink:type="simple" /> </jats:inline-formula> plane. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 034108

Static fluid spheres admitting Karmarkar condition

Ksh. Newton Singh; Ravindra K. Bisht; S. K. Maurya; Neeraj Pant

<jats:title>Abstract</jats:title> <jats:p>We explore a new relativistic anisotropic solution of the Einstein field equations for compact stars based on embedding class one condition. For this purpose, we use the embedding class one methodology by employing the Karmarkar condition. Employing this methodology, we obtain a particular differential equation that connects both the gravitational potentials <jats:inline-formula> <jats:tex-math><?CDATA ${\rm e}^{\lambda}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_035101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA ${\rm e}^{\nu}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_035101_M2.jpg" xlink:type="simple" /> </jats:inline-formula>. We solve this particular differential equation choosing a simple form of generalized gravitational potential <jats:inline-formula> <jats:tex-math><?CDATA $g_{rr}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_3_035101_M3.jpg" xlink:type="simple" /> </jats:inline-formula> to describe a complete structure of the space-time within the stellar configuration. After determining this space-time geometry for the stellar models, we discuss thermodynamical observables including radial and tangential pressures, matter density, red-shift, velocity of sound, etc., in the stellar models. We also perform a complete graphical analysis, which shows that our models satisfy all the physical and mathematical requirements of ultra-high dense collapsed structures. Further, we discuss the moment of inertia and M-R curve for rotating and non-rotating stars. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 035101

Joule-Thomson expansion of the regular(Bardeen)-AdS black hole *

Sen Guo; Jin Pu; Qing-Quan Jiang; Xiao-Tao Zu

<jats:title>Abstract</jats:title> <jats:p>We study the Joule-Thomson expansion of the regular black hole in an anti-de Sitter background, and obtain the inversion temperature for the Bardeen-AdS black hole in the extended phase space. We investigate the isenthalpic and inversion curves for the Bardeen-AdS black hole in the <jats:italic>T</jats:italic>-<jats:italic>P</jats:italic> plane and find that the intersection points between them are exactly the inversion points discriminating the heating from the cooling process. The inversion curve for the regular(Bardeen)-AdS black hole is not closed and there is only a lower inversion curve, in contrast to the Van der Waals fluid. Most importantly, we find that the ratio between the minimum inversion temperature and the critical temperature for the regular(Bardeen)-AdS black hole is 0.536622, which is larger than any known ratio for the singular black hole. The large ratio for the Bardeen-AdS black hole may be due to the repulsive de Sitter core near the origin of the regular black hole. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 035102

Future Physics Programme of BESIII *

M. Ablikim; M. N. Achasov; P. Adlarson; S. Ahmed; M. Albrecht; M. Alekseev; A. Amoroso; F. F. An; Q. An; Y. Bai; O. Bakina; R. Baldini Ferroli; Y. Ban; K. Begzsuren; J. V. Bennett; N. Berger; M. Bertani; D. Bettoni; F. Bianchi; J Biernat; J. Bloms; I. Boyko; R. A. Briere; L. Calibbi; H. Cai; X. Cai; A. Calcaterra; G. F. Cao; N. Cao; S. A. Cetin; J. Chai; J. F. Chang; W. L. Chang; J. Charles; G. Chelkov; Chen; G. Chen; H. S. Chen; J. C. Chen; M. L. Chen; S. J. Chen; Y. B. Chen; H. Y. Cheng; W. Cheng; G. Cibinetto; F. Cossio; X. F. Cui; H. L. Dai; J. P. Dai; X. C. Dai; A. Dbeyssi; D. Dedovich; Z. Y. Deng; A. Denig; I. Denysenko; M. Destefanis; S. Descotes-Genon; F. De Mori; Y. Ding; C. Dong; J. Dong; L. Y. Dong; M. Y. Dong; Z. L. Dou; S. X. Du; S. I. Eidelman; J. Z. Fan; J. Fang; S. S. Fang; Y. Fang; R. Farinelli; L. Fava; F. Feldbauer; G. Felici; C. Q. Feng; M. Fritsch; C. D. Fu; Y. Fu; Q. Gao; X. L. Gao; Y. Gao; Y. Gao; Y. G. Gao; Z. Gao; B. Garillon; I. Garzia; E. M. Gersabeck; A. Gilman; K. Goetzen; L. Gong; W. X. Gong; W. Gradl; M. Greco; L. M. Gu; M. H. Gu; Y. T. Gu; A. Q. Guo; F. K. Guo; L. B. Guo; R. P. Guo; Y. P. Guo; A. Guskov; S. Han; X. Q. Hao; F. A. Harris; K. L. He; F. H. Heinsius; T. Held; Y. K. Heng; Y. R. Hou; Z. L. Hou; H. M. Hu; J. F. Hu; T. Hu; Y. Hu; G. S. Huang; J. S. Huang; X. T. Huang; X. Z. Huang; Z. L. Huang; N. Huesken; T. Hussain; W. Ikegami Andersson; W. Imoehl; M. Irshad; Q. Ji; Q. P. Ji; X. B. Ji; X. L. Ji; H. L. Jiang; X. S. Jiang; X. Y. Jiang; J. B. Jiao; Z. Jiao; D. P. Jin; S. Jin; Y. Jin; T. Johansson; N. Kalantar-Nayestanaki; X. S. Kang; R. Kappert; M. Kavatsyuk; B. C. Ke; I. K. Keshk; T. Khan; A. Khoukaz; P. Kiese; R. Kiuchi; R. Kliemt; L. Koch; O. B. Kolcu; B. Kopf; M. Kuemmel; M. Kuessner; A. Kupsc; M. Kurth; M. G. Kurth; W. Kühn; J. S. Lange; P. Larin; L. Lavezzi; H. Leithoff; T. Lenz; C. Li; Cheng Li; D. M. Li; F. Li; F. Y. Li; G. Li; H. B. Li; H. J. Li; J. C. Li; J. W. Li; Ke Li; L. K. Li; Lei Li; P. L. Li; P. R. Li; Q. Y. Li; W. D. Li; W. G. Li; X. H. Li; X. L. Li; X. N. Li; X. Q. Li; Z. B. Li; H. Liang; H. Liang; Y. F. Liang; Y. T. Liang; G. R. Liao; L. Z. Liao; J. Libby; C. X. Lin; D. X. Lin; Y. J. Lin; B. Liu; B. J. Liu; C. X. Liu; D. Liu; D. Y. Liu; F. H. Liu; Fang Liu; Feng Liu; H. B. Liu; H. M. Liu; Huanhuan Liu; Huihui Liu; J. B. Liu; J. Y. Liu; K. Y. Liu; Ke Liu; Q. Liu; S. B. Liu; T. Liu; X. Liu; X. Y. Liu; Y. B. Liu; Z. A. Liu; Zhiqing Liu; Y. F. Long; X. C. Lou; H. J. Lu; J. D. Lu; J. G. Lu; Y. Lu; Y. P. Lu; C. L. Luo; M. X. Luo; P. W. Luo; T. Luo; X. L. Luo; S. Lusso; X. R. Lyu; F. C. Ma; H. L. Ma; L. L. Ma; M. M. Ma; Q. M. Ma; X. N. Ma; X. X. Ma; X. Y. Ma; Y. M. Ma; F. E. Maas; M. Maggiora; S. Maldaner; S. Malde; Q. A. Malik; A. Mangoni; Y. J. Mao; Z. P. Mao; S. Marcello; Z. X. Meng; J. G. Messchendorp; G. Mezzadri; J. Min; T. J. Min; R. E. Mitchell; X. H. Mo; Y. J. Mo; C. Morales Morales; N.Yu. Muchnoi; H. Muramatsu; A. Mustafa; S. Nakhoul; Y. Nefedov; F. Nerling; I. B. Nikolaev; Z. Ning; S. Nisar; S. L. Niu; S. L. Olsen; Q. Ouyang; S. Pacetti; Y. Pan; M. Papenbrock; P. Patteri; M. Pelizaeus; H. P. Peng; K. Peters; A. A. Petrov; J. Pettersson; J. L. Ping; R. G. Ping; A. Pitka; R. Poling; V. Prasad; M. Qi; T. Y. Qi; S. Qian; C. F. Qiao; N. Qin; X. P. Qin; X. S. Qin; Z. H. Qin; J. F. Qiu; S. Q. Qu; K. H. Rashid; C. F. Redmer; M. Richter; M. Ripka; A. Rivetti; V. Rodin; M. Rolo; G. Rong; J. L. Rosner; Ch. Rosner; M. Rump; A. Sarantsev; M. Savrié; K. Schoenning; W. Shan; X. Y. Shan; M. Shao; C. P. Shen; P. X. Shen; X. Y. Shen; H. Y. Sheng; X. Shi; X.D Shi; J. J. Song; Q. Q. Song; X. Y. Song; S. Sosio; C. Sowa; S. Spataro; F. F. Sui; G. X. Sun; J. F. Sun; L. Sun; S. S. Sun; X. H. Sun; Y. J. Sun; Y.K Sun; Y. Z. Sun; Z. J. Sun; Z. T. Sun; Y.T Tan; C. J. Tang; G. Y. Tang; X. Tang; V. Thoren; B. Tsednee; I. Uman; B. Wang; B. L. Wang; C. W. Wang; D. Y. Wang; H. H. Wang; K. Wang; L. L. Wang; L. S. Wang; M. Wang; M. Z. Wang; Wang Meng; P. L. Wang; R. M. Wang; W. P. Wang; X. Wang; X. F. Wang; X. L. Wang; Y. Wang; Y. F. Wang; Z. Wang; Z. G. Wang; Z. Y. Wang; Zongyuan Wang; T. Weber; D. H. Wei; P. Weidenkaff; H. W. Wen; S. P. Wen; U. Wiedner; G. Wilkinson; M. Wolke; L. H. Wu; L. J. Wu; Z. Wu; L. Xia; Y. Xia; S. Y. Xiao; Y. J. Xiao; Z. J. Xiao; Y. G. Xie; Y. H. Xie; T. Y. Xing; X. A. Xiong; Q. L. Xiu; G. F. Xu; L. Xu; Q. J. Xu; W. Xu; X. P. Xu; F. Yan; L. Yan; W. B. Yan; W. C. Yan; Y. H. Yan; H. J. Yang; H. X. Yang; L. Yang; R. X. Yang; S. L. Yang; Y. H. Yang; Y. X. Yang; Yifan Yang; Z. Q. Yang; M. Ye; M. H. Ye; J. H. Yin; Z. Y. You; B. X. Yu; C. X. Yu; J. S. Yu; C. Z. Yuan; X. Q. Yuan; Y. Yuan; A. Yuncu; A. A. Zafar; Y. Zeng; B. X. Zhang; B. Y. Zhang; C. C. Zhang; D. H. Zhang; H. H. Zhang; H. Y. Zhang; J. Zhang; J. L. Zhang; J. Q. Zhang; J. W. Zhang; J. Y. Zhang; J. Z. Zhang; K. Zhang; L. Zhang; S. F. Zhang; T. J. Zhang; X. Y. Zhang; Y. Zhang; Y. H. Zhang; Y. T. Zhang; Yang Zhang; Yao Zhang; Yi Zhang; Yu Zhang; Z. H. Zhang; Z. P. Zhang; Z. Q. Zhang; Z. Y. Zhang; G. Zhao; J. W. Zhao; J. Y. Zhao; J. Z. Zhao; Lei Zhao; Ling Zhao; M. G. Zhao; Q. Zhao; S. J. Zhao; T. C. Zhao; Y. B. Zhao; Z. G. Zhao; A. Zhemchugov; B. Zheng; J. P. Zheng; Y. Zheng; Y. H. Zheng; B. Zhong; L. Zhou; L. P. Zhou; Q. Zhou; X. Zhou; X. K. Zhou; X. R. Zhou; Xingyu Zhou; Xiaoyu Zhou; Xu Zhou; A. N. Zhu; J. Zhu; J. Zhu; K. Zhu; K. J. Zhu; S. H. Zhu; W. J. Zhu; X. L. Zhu; Y. C. Zhu; Y. S. Zhu; Z. A. Zhu; J. Zhuang; B. S. Zou; J. H. Zou

<jats:title>Abstract</jats:title> <jats:p>There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like <jats:italic>XYZ</jats:italic> states at BESIII and <jats:italic>B</jats:italic> factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related <jats:italic>X</jats:italic>(1835) meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons. </jats:p> <jats:p>We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII during the remaining operation period of BEPCII. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCII to higher luminosity.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 040001

Sea quark contributions to nucleon electromagnetic form factors with the nonlocal chiral effective Lagrangian *

Ming-Yang Yang; Ping Wang

<jats:title>Abstract</jats:title> <jats:p>The sea quark contributions to the nucleon electromagnetic form factors of the up, down and strange quarks are studied with the nonlocal chiral effective Lagrangian. Both octet and decuplet intermediate states are included in the one loop calculations. Compared with the strange quark form factors, although their signs are the same, the absolute value of the light quark form factors are much larger. For both the electric and magnetic form factors, the contribution of the <jats:italic>d</jats:italic> quark is larger than of the <jats:italic>u</jats:italic> quark. The current lattice simulations of the light sea quark form factors are in between our results for the <jats:italic>u</jats:italic> and <jats:italic>d</jats:italic>quarks. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 053101

Semileptonic decays in the PQCD approach with the lattice QCD input *

Xue-Qing Hu; Su-Ping Jin; Zhen-Jun Xiao

<jats:title>Abstract</jats:title> <jats:p>We study the semileptonic <jats:inline-formula> <jats:tex-math><?CDATA $ B/B_s \to (D^{(*)},D_s^{(*)}) l\nu_l $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M2.jpg" xlink:type="simple" /> </jats:inline-formula> decays in the framework of the Standard Model (SM), by employing the perturbative QCD (PQCD) factorization formalism combined with the lattice QCD input for the relevant transition form factors. We calculate the branching ratios <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal B}(B_{(s)} \to D_{(s)}^{(*)} l \nu_l ) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> with <jats:inline-formula> <jats:tex-math><?CDATA $ l = (e,\mu,\tau) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, the ratios of the branching fractions <jats:inline-formula> <jats:tex-math><?CDATA $ R(D^{(*)}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ R(D_s^{(*)} ) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, and the physical observables <jats:inline-formula> <jats:tex-math><?CDATA $ P_\tau(D_{(s)}^{(*)}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ F_L(D^*_{(s)}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M8.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ A_{FB}(\tau) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M9.jpg" xlink:type="simple" /> </jats:inline-formula>. The “PQCD+Lattice” predictions for <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal B}(B \to D^{(*)} l\nu_l) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M10.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ R(D^{(*)}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M11.jpg" xlink:type="simple" /> </jats:inline-formula> agree with the available experimental measurements within errors. For the ratios <jats:inline-formula> <jats:tex-math><?CDATA $ R(D_s) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M12.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ R(D_s^*) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, the "PQCD+Lattice" predictions agree with the other predictions. For <jats:inline-formula> <jats:tex-math><?CDATA $ P_\tau(D^*) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M14.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ F_L(D^*) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M15.jpg" xlink:type="simple" /> </jats:inline-formula>, our theoretical predictions agree with the measured values within errors. Our theoretical predictions of the semileptonic <jats:inline-formula> <jats:tex-math><?CDATA $ B/B_s $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_5_053102_M16.jpg" xlink:type="simple" /> </jats:inline-formula> decays considered could be tested in the near future by the LHCb and Belle II experiments. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 053102

Dynamics of scalar fields in an expanding/contracting cosmos at finite temperature *

Hui Xu; Lei Ming; Yeuk-Kwan E. Cheung

<jats:title>Abstract</jats:title> <jats:p>This study extends the investigation of quantum dissipative effects of a cosmological scalar field by taking into account cosmic expansion and contraction. Cheung, Drewes, Kang, and Kim calculated the effective action and quantum dissipative effects of a cosmological scalar field in a recent work, where analytical expressions for the effective potential and damping coefficient were presented using a simple scalar model with quartic interactions, and the work was conducted using Minkowski-space propagators in loop diagrams. In this work, we incorporate the Hubble expansion and contraction of the cosmic background and focus on the thermal dynamics of a scalar field in a regime where the effective potential changes slowly. Given that the Hubble parameter, <jats:italic>H</jats:italic>, attains a small but non-zero value, we carry out calculations to the first order in <jats:italic>H</jats:italic>. If we set <jats:italic>H</jats:italic> = 0, all results match those in flat spacetime. Interestingly, we must integrate over the resonances, which in turn leads to an amplification of the effects of a non-zero <jats:italic>H</jats:italic>. This is an intriguing phenomenon, which cannot be uncovered in flat spacetime. The implications on particle creations in the early universe will be studied in a forthcoming study. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 053103

Probe chiral magnetic effect with signed balance function *

A. H. Tang

<jats:title>Abstract</jats:title> <jats:p>In this paper a pair of observables are proposed as alternative ways, by examining the fluctuation of net momentum-ordering of charged pairs, to study the charge separation induced by the Chiral Magnetic Effect (CME) in relativistic heavy ion collisions. They are, the out-of-plane to in-plane ratio of fluctuation of the difference between signed balance functions measured in pair’s rest frame, and the ratio of it to similar measurement made in the laboratory frame. Both observables have been studied with simulations including flow-related backgrounds, and for the first time, backgrounds that are related to resonance's global spin alignment. The two observables have similar positive responses to signal, and opposite, limited responses to identifiable backgrounds arising from resonance flow and spin alignment. Both observables have also been tested with two realistic models, namely, a multi-phase transport (AMPT) model and the anomalous-viscous fluid dynamics (AVFD) model. These two observables, when cross examined, will provide useful insights in the study of CME-induced charge separation.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 054101