Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Quasinormal modes of charged black holes in Einstein-Maxwell-Weyl gravity *
De-Cheng Zou; Chao Wu; Ming Zhang; Ruihong Yue
<jats:title>Abstract</jats:title> <jats:p>We study quasinormal modes (QNMs) of charged black holes in the Einstein-Maxwell-Weyl (EMW) gravity by adopting the test scalar field perturbation. We find that the imaginary part of QNM frequencies is consistently negative for different angular parameters <jats:italic>l</jats:italic>, indicating that these modes always decay and are therefore stable. We do not observe a linear relationship between the QNM frequency <jats:italic>ω</jats:italic> and parameter <jats:italic>p</jats:italic> for these black holes, as their charge <jats:italic>Q</jats:italic> causes a nonlinear effect. We evaluate the massive scalar field perturbation in charged black holes and find that random long lived modes (i.e., quasiresonances) could exist in this spectrum. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 055102
Thermodynamics and weak cosmic censorship conjecture of an AdS black hole with a monopole in the extended phase space *
Xin-Yun Hu; Ke-Jian He; Xiao-Xiong Zeng; Jian-Pin Wu
<jats:title>Abstract</jats:title> <jats:p>The first law of black hole thermodynamics has been shown to be valid in the extended phase space. However, the second law and the weak cosmic censorship conjecture have not been investigated extensively. We investigate the laws of thermodynamics and the weak cosmic censorship conjecture of an AdS black hole with a global monopole in the extended phase space in the case of charged particle absorption. It is shown that the first law of thermodynamics is valid, while the second law is violated for the extremal and near-extremal black holes. Moreover, we find that the weak cosmic censorship conjecture is valid only for the extremal black hole, and that it can be violated for the near-extremal black holes, which is different from the previous results.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 055103
First order QED processes in a spatially flat FLRW space-time with a Milne-type scale factor
Ion I. Cotăescu; Diana Popescu
<jats:title>Abstract</jats:title> <jats:p>The quantum electrodynamics (QED) in a spatially flat (1+3)-dimensional Friedmann-Lemaître-Robertson-Walker (FLRW) space-time with a Milne-type scale factor is outlined focusing on the amplitudes of the allowed processes in the first order perturbations. The definition of the transition rates is reconsidered such that an appropriate angular behavior of the probability for creation of an electron-positron pair from a photon is obtained, which has a similar rate as the creation of a photon and an electron-positron pair from vacuum. It is shown that these processes are allowed only in the first order perturbations, since the photon emission or absorption by an electron or positron are forbidden.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 055104
Light higgsino-dominated NLSPs in semi-constrained NMSSM *
Kun Wang; Jingya Zhu
<jats:title>Abstract</jats:title> <jats:p>In the semi-constrained next-to minimal supersymmetric standard model (scNMSSM, or NMSSM with non-universal Higgs mass) under current constraints, we consider a scenario where <jats:inline-formula> <jats:tex-math><?CDATA $h_2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> is the SM-like Higgs, <jats:inline-formula> <jats:tex-math><?CDATA $\tilde{\chi}^0_1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> is a singlino-dominated LSP; <jats:inline-formula> <jats:tex-math><?CDATA $\tilde{\chi}^{\pm}_1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\tilde{\chi}^0_{2,3}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> are mass-degenerated, light, and higgsino-dominated next-to-lightest supersymmetric particles (NLSPs). We investigate the constraints of these NLSPs by searching for supersymmetry particles at the LHC Run-I and Run-II and discuss the possibility of discovering these NLSPs in the future. We arrive at the following conclusions: (i) With all data of Run I and up to <jats:inline-formula> <jats:tex-math><?CDATA $36\;{\rm{fb}}^{-1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> data of Run II at the LHC, the search results by ATLAS and CMS still cannot exclude the higgsino-dominated NLSPs of <jats:inline-formula> <jats:tex-math><?CDATA $100\sim200\;{\rm{GeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M6.jpg" xlink:type="simple" /> </jats:inline-formula>. (ii) When the mass difference with <jats:inline-formula> <jats:tex-math><?CDATA $\tilde{\chi}^0_{1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M7.jpg" xlink:type="simple" /> </jats:inline-formula> is smaller than <jats:inline-formula> <jats:tex-math><?CDATA $m_{h_2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\tilde{\chi}^0_{2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M9.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\tilde{\chi}^0_{3}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M10.jpg" xlink:type="simple" /> </jats:inline-formula> have opposite preferences with regard to decaying to <jats:inline-formula> <jats:tex-math><?CDATA $Z/Z^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M11.jpg" xlink:type="simple" /> </jats:inline-formula> or <jats:inline-formula> <jats:tex-math><?CDATA $h_1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M12.jpg" xlink:type="simple" /> </jats:inline-formula>. (iii) When the mass difference between NLSP and LSP is larger than <jats:inline-formula> <jats:tex-math><?CDATA $m_Z$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, most samples can be verified at the <jats:inline-formula> <jats:tex-math><?CDATA $5\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M14.jpg" xlink:type="simple" /> </jats:inline-formula> level with future <jats:inline-formula> <jats:tex-math><?CDATA $300\;{\rm{fb}}^{-1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M15.jpg" xlink:type="simple" /> </jats:inline-formula> data at the LHC. Meanwhile, with <jats:inline-formula> <jats:tex-math><?CDATA $3000\;{\rm{fb}}^{-1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M16.jpg" xlink:type="simple" /> </jats:inline-formula> data at high-luminosity LHC (HL-LHC), almost all of the samples can be verified at the <jats:inline-formula> <jats:tex-math><?CDATA $5\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M17.jpg" xlink:type="simple" /> </jats:inline-formula> level, even if the mass difference is insufficient. (iv) The <jats:inline-formula> <jats:tex-math><?CDATA $a_1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M18.jpg" xlink:type="simple" /> </jats:inline-formula> funnel and the <jats:inline-formula> <jats:tex-math><?CDATA $h_2/Z$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_061001_M19.jpg" xlink:type="simple" /> </jats:inline-formula> funnel mechanisms for the singlino-dominated LSP annihilation cannot be distinguished by searching for NLSPs. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 061001
Extraction of the CKM phase γ from the charmless two-body B meson decays *
Si-Hong Zhou; Cai-Dian Lü
<jats:title>Abstract</jats:title> <jats:p>Using all experimentally measured charmless <jats:inline-formula> <jats:tex-math><?CDATA $B \to PP$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063101_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $PV$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063101_M2.jpg" xlink:type="simple" /> </jats:inline-formula> decay modes, where <jats:inline-formula> <jats:tex-math><?CDATA $P(V)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063101_M3.jpg" xlink:type="simple" /> </jats:inline-formula> denotes a light pseudoscalar (vector) meson, we extract the CKM angle <jats:inline-formula> <jats:tex-math><?CDATA $\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063101_M4.jpg" xlink:type="simple" /> </jats:inline-formula> by a global fit. All hadronic parameters are determined from the experimental data, such that the approach is least model dependent. The contributions of the various decay modes are classified by the topological weak Feynman diagram amplitudes, which are determined by the global fit. To improve the precision of the approach, we consider the flavor <jats:italic>SU</jats:italic>(3) breaking effects of the topological diagram amplitudes of the decay modes by including the form factors and decay constants. The fit result for the CKM angle <jats:inline-formula> <jats:tex-math><?CDATA $\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063101_M6.jpg" xlink:type="simple" /> </jats:inline-formula> is <jats:inline-formula> <jats:tex-math><?CDATA $(69.8 \pm 2.1 \pm 0.9) ^{\circ }$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063101_M7.jpg" xlink:type="simple" /> </jats:inline-formula>. It is consistent with the current world average values but has a smaller uncertainty. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063101
PandaX limits on the light dark matter with a light mediator in the singlet extension of MSSM *
Wenyu Wang; Jia-Jun Wu; Zhao-Hua Xiong; Jun Zhao
<jats:title>Abstract</jats:title> <jats:p>Using the latest PandaX limits on the light dark matter (DM) with a light mediator, we check their implication on the parameter space of the general singlet extension of MSSM (without <jats:italic>Z</jats:italic> <jats:sub>3</jats:sub> symmetry), which can have a sufficient DM self-interaction to solve the small-scale structure problem. We find that the PandaX limits can tightly constrain the parameter space, depending on the coupling <jats:italic>λ</jats:italic> between the singlet and doublet Higgs fields. For the singlet extension of MSSM with <jats:italic>Z</jats:italic> <jats:sub>3</jats:sub> symmetry, the so-called NMSSM, we also demonstrate the PandaX constraints on its parameter space, which gives a light DM with the correct relic density but without sufficient self-interaction to solve the small-scale structure problem. We find that in NMSSM, the GeV dark matter with a sub-GeV mediator is tightly constrained. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063102
Connecting muon anomalous magnetic moment and multi-lepton anomalies at LHC
Danielle Sabatta; Alan S. Cornell; Ashok Goyal; Mukesh Kumar; Bruce Mellado; Xifeng Ruan
<jats:title>Abstract</jats:title> <jats:p>In a previous paper by several of the authors a number of predictions were made in a study pertaining to the anomalous production of multiple leptons at the Large Hadron Collider (LHC). Discrepancies in multi-lepton final states have become statistically compelling with the available Run 2 data. These could be connected with a heavy boson, <jats:italic>H</jats:italic>, which predominantly decays into a standard model Higgs boson, <jats:italic>h</jats:italic>, and a singlet scalar, <jats:italic>S</jats:italic>, where <jats:inline-formula> <jats:tex-math><?CDATA $m_H\approx 270$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> GeV and <jats:inline-formula> <jats:tex-math><?CDATA $m_S\approx 150$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> GeV. These can then be embedded into a scenario where a two-Higgs-doublet is considered with an additional singlet scalar, 2HDM+S. The long-standing discrepancy in the muon anomalous magnetic moment, <jats:inline-formula> <jats:tex-math><?CDATA $\Delta a_\mu$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063103_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, is interpreted in the context of the 2HDM+S type-II and type-X, along with additional fermionic degrees of freedom. The 2HDM+S model alone, with constraints from the LHC data, does not seem to explain the <jats:inline-formula> <jats:tex-math><?CDATA $\Delta a_\mu$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> anomaly. However, adding fermions with mass of order <jats:inline-formula> <jats:tex-math><?CDATA ${\cal O}(100)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063103_M5.jpg" xlink:type="simple" /> </jats:inline-formula> GeV can explain the discrepancy for sufficiently low values of fermion-scalar couplings. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063103
Revisiting the heavy vector quarkonium leptonic widths *
Guo-Li Wang; Xing-Gang Wu
<jats:title>Abstract</jats:title> <jats:p>We revisit the heavy quarkonium leptonic decays <jats:inline-formula> <jats:tex-math><?CDATA $ \psi(nS) \to \ell^+\ell^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Upsilon(nS) \to \ell^+\ell^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M2.jpg" xlink:type="simple" /> </jats:inline-formula> using the Bethe-Salpeter method. The emphasis is on the relativistic corrections. For the <jats:inline-formula> <jats:tex-math><?CDATA $ \psi(1S-5S) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> decays, the relativistic effects are <jats:inline-formula> <jats:tex-math><?CDATA $ 22^{+3}_{-2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M4.jpg" xlink:type="simple" /> </jats:inline-formula>%, <jats:inline-formula> <jats:tex-math><?CDATA $ 34^{+5}_{-5} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M5.jpg" xlink:type="simple" /> </jats:inline-formula>%, <jats:inline-formula> <jats:tex-math><?CDATA $ 41^{+6}_{-6} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M6.jpg" xlink:type="simple" /> </jats:inline-formula>%, <jats:inline-formula> <jats:tex-math><?CDATA $ 52^{+11}_{-13} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M7.jpg" xlink:type="simple" /> </jats:inline-formula>% and <jats:inline-formula> <jats:tex-math><?CDATA $ 62^{+14}_{-12} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M8.jpg" xlink:type="simple" /> </jats:inline-formula>%, respectively. For the <jats:inline-formula> <jats:tex-math><?CDATA $ \Upsilon(1S-5S) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M9.jpg" xlink:type="simple" /> </jats:inline-formula> decays, the relativistic effects are <jats:inline-formula> <jats:tex-math><?CDATA $ 14^{+1}_{-2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M10.jpg" xlink:type="simple" /> </jats:inline-formula>%, <jats:inline-formula> <jats:tex-math><?CDATA $ 23^{+0}_{-3} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M11.jpg" xlink:type="simple" /> </jats:inline-formula>%, <jats:inline-formula> <jats:tex-math><?CDATA $ 20^{+8}_{-2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M12.jpg" xlink:type="simple" /> </jats:inline-formula>%, <jats:inline-formula> <jats:tex-math><?CDATA $ 21^{+6}_{-7} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M13.jpg" xlink:type="simple" /> </jats:inline-formula>% and <jats:inline-formula> <jats:tex-math><?CDATA $ 28^{+2}_{-7} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M14.jpg" xlink:type="simple" /> </jats:inline-formula>%, respectively. Thus, the relativistic corrections are large and important in heavy quarkonium leptonic decays, especially for the highly excited charmonium. Our results for <jats:inline-formula> <jats:tex-math><?CDATA $ \Upsilon(nS) \to \ell^+\ell^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063104_M15.jpg" xlink:type="simple" /> </jats:inline-formula> are consistent with the experimental data. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063104
Axialvector tetraquark candidates for Zc(3900), Zc(4020), Zc(4430), and Zc(4600) *
Zhi-Gang Wang
<jats:title>Abstract</jats:title> <jats:p>We construct the axialvector and tensor current operators to systematically investigate the ground and first radially excited tetraquark states with quantum numbers <jats:inline-formula> <jats:tex-math><?CDATA $J^{PC}=1^{+-}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063105_M5.jpg" xlink:type="simple" /> </jats:inline-formula> using the QCD sum rules. We observe one axialvector tetraquark candidate for <jats:inline-formula> <jats:tex-math><?CDATA $Z_c(3900)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063105_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $Z_c(4430)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063105_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, two axialvector tetraquark candidates for the <jats:inline-formula> <jats:tex-math><?CDATA $Z_c(4020)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063105_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, and three axialvector tetraquark candidates for <jats:inline-formula> <jats:tex-math><?CDATA $Z_c(4600)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_6_063105_M9.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063105
Probing the scale of new physics in the ZZγ coupling at e+e− colliders
John Ellis; Shao-Feng Ge; Hong-Jian He; Rui-Qing Xiao
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063106