Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Transverse Ward-Takahashi identities and full vertex functions in different representations of QED3 *
Cui-Bai Luo; Hong-Shi Zong
<jats:title>Abstract</jats:title> <jats:p>We derive the transverse Ward-Takahashi identities (WTI) of <jats:italic>N</jats:italic>-dimensional quantum electrodynamics by means of the canonical quantization method and the path integration method, and subsequently attempt to prove that QED<jats:sub>3</jats:sub> is solvable based on the transverse and longitudinal WTI, indicating that the full vector and tensor vertices functions can be expressed in terms of the fermion propagators in QED<jats:sub>3</jats:sub>. Further, we discuss the effect of different <jats:italic>γ</jats:italic> matrix representations on the full vertex function. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 073105
Investigation of rare semileptonic decays with non-universal Z′ effect
P. Maji; S. Mahata; P. Nayek; S. Biswas; S. Sahoo
<jats:title>Abstract</jats:title> <jats:p>We analyze different decay observables of semileptonic decays <jats:inline-formula> <jats:tex-math><?CDATA ${B}_{c}\to \left({D}_{s,d}^{\left(*\right)}\right){\mu }^{+}{\mu }^{-}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_073106_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, such as the branching ratio, forward-backward asymmetry, polarization fraction, and lepton polarization asymmetry in the non-universal <jats:inline-formula> <jats:tex-math><?CDATA $ Z'$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_073106_M2.jpg" xlink:type="simple" /> </jats:inline-formula> model. We further study the dependence of the branching fraction to the new model parameters and find that the values of different decay parameters increase in the <jats:inline-formula> <jats:tex-math><?CDATA $ Z'$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_073106_M3.jpg" xlink:type="simple" /> </jats:inline-formula> model, which indicates a possible approach for the search of new physics as well as for the unknown phenomena of the charm <jats:italic>B</jats:italic> meson. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 073106
Astrophysical 22Mg(p, γ)23Al reaction rates from asymptotic normalization coefficient of 23Ne→22Ne+n *
Xin-Yue Li; Bing Guo; Zhi-Hong Li; Wei-Ping Liu
<jats:title>Abstract</jats:title> <jats:p>The radionuclide <jats:sup>22</jats:sup>Na generates the emission of a characteristic 1.275 MeV <jats:inline-formula> <jats:tex-math><?CDATA $\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M2.jpg" xlink:type="simple" /> </jats:inline-formula>-ray. This is a potential astronomical observable, whose occurrence is suspected in classical novae. The <jats:inline-formula> <jats:tex-math><?CDATA $^{22}{{\rm{Mg}}}(p,\,\gamma)^{23}{{\rm{Al}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> reaction is relevant to the nucleosynthesis of <jats:sup>22</jats:sup>Na in Ne-rich novae. In this study, employing the adiabatic distorted wave approximation and continuum discretized coupled channel methods, the squared neutron asymptotic normalization coefficients (ANCs) for the virtual decay of <jats:inline-formula> <jats:tex-math><?CDATA $^{23}{{\rm{Ne}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $\to$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M6.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $^{22}{{\rm{Ne}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M7.jpg" xlink:type="simple" /> </jats:inline-formula> + <jats:italic>n</jats:italic> were extracted, and determined as <jats:inline-formula> <jats:tex-math><?CDATA $(0.483\pm0.060)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M8.jpg" xlink:type="simple" /> </jats:inline-formula> fm<jats:sup>−1</jats:sup> and <jats:inline-formula> <jats:tex-math><?CDATA $(9.7\pm2.3)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M10.jpg" xlink:type="simple" /> </jats:inline-formula> fm<jats:sup>−1</jats:sup> for the ground state and the first excited state from the experimental angular distributions of <jats:inline-formula> <jats:tex-math><?CDATA ${}^{22}{{\rm{Ne}}}(d,\,p){}^{23}{{\rm{Ne}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M12.jpg" xlink:type="simple" /> </jats:inline-formula> populating the ground state and the first excited state of <jats:inline-formula> <jats:tex-math><?CDATA $^{23}{{\rm{Ne}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively. Then, the squared proton ANC of <jats:inline-formula> <jats:tex-math><?CDATA ${}^{23}{{\rm{Al}}}_{\rm{g.s.}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M14.jpg" xlink:type="simple" /> </jats:inline-formula> was obtained as <jats:inline-formula> <jats:tex-math><?CDATA $C_{d5/2}^{2}({}^{23}{{\rm{Al}}})=(2.65\pm0.33)\times10^{3}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M15.jpg" xlink:type="simple" /> </jats:inline-formula> fm<jats:sup>−1</jats:sup> according to the charge symmetry of the strong interaction. The astrophysical <jats:italic>S</jats:italic>-factors and reaction rates for the direct capture contribution in <jats:inline-formula> <jats:tex-math><?CDATA ${}^{22}{{\rm{Mg}}}(p,\,\gamma){}^{23}{{\rm{Al}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M17.jpg" xlink:type="simple" /> </jats:inline-formula> were also presented. Furthermore, the proton width of the first excited state of <jats:inline-formula> <jats:tex-math><?CDATA $^{23}{{\rm{Al}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M18.jpg" xlink:type="simple" /> </jats:inline-formula> was derived to be <jats:inline-formula> <jats:tex-math><?CDATA $(57\pm14)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M19.jpg" xlink:type="simple" /> </jats:inline-formula> eV from the neutron ANC of its mirror state in <jats:inline-formula> <jats:tex-math><?CDATA $^{23}{{\rm{Ne}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M20.jpg" xlink:type="simple" /> </jats:inline-formula> and used to compute the contribution from the first resonance of <jats:inline-formula> <jats:tex-math><?CDATA $^{23}{{\rm{Al}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M21.jpg" xlink:type="simple" /> </jats:inline-formula>. This result demonstrates that the direct capture dominates the <jats:inline-formula> <jats:tex-math><?CDATA $^{22}{{\rm{Mg}}}(p,\,\gamma)^{23}{{\rm{Al}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M22.jpg" xlink:type="simple" /> </jats:inline-formula> reaction at most temperatures of astrophysical relevance for <jats:inline-formula> <jats:tex-math><?CDATA $0.33 \lt T_9 \lt 0.64$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074001_M23.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074001
Neutron drip line of Z= 9–11 isotopic chains *
Rong An; Guo-Fang Shen; Shi-Sheng Zhang; Li-Sheng Geng
<jats:title>Abstract</jats:title> <jats:p>A recent experimental breakthrough identified the last bound neutron-rich nuclei in fluorine and neon isotopes. Based on this finding, we perform a theoretical study of <jats:italic>Z</jats:italic> = 9, 10, 11, 12 isotopes in the relativistic mean field (RMF) model. The mean field parameters are assumed from the PK1 parameterization, and the pairing correlation is described by the particle number conservation BCS (FBCS) method recently formulated in the RMF model. We show that the FBCS approach plays an essential role in reproducing experimental results of fluorine and neon isotopes. Furthermore, we predict <jats:sup>39</jats:sup>Na and <jats:sup>40</jats:sup>Mg to be the last bound neutron-rich nuclei in sodium and magnesium isotopes. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074101
Doublet bands at borders of A ≈ 130 island of chiral candidates: Case study of 120I *
Rui Guo; Yong-Hao Liu; Jian Li; Wu-Ji Sun; Li Li; Ying-Jun Ma
<jats:title>Abstract</jats:title> <jats:p>Positive-parity doublet bands were reported in <jats:sup>120</jats:sup>I. Based on these, we discuss the corresponding experimental characteristics, including rotational alignment, and re-examine the corresponding configuration assignment. The self-consistent tilted axis cranking relativistic mean-field calculations indicate that the doublet bands are built on the configuration <jats:inline-formula> <jats:tex-math><?CDATA $\pi h _{11/2}\otimes \nu h ^{-1}_{11/2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074102_M1.jpg" xlink:type="simple" /> </jats:inline-formula>. By adopting the two quasiparticles coupled with a triaxial rotor model, the excitation energies, energy staggering parameter <jats:italic>S</jats:italic>(<jats:italic>I</jats:italic>), <jats:inline-formula> <jats:tex-math><?CDATA $B(M1)/B(E2)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074102_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, effective angles, and <jats:italic>K plots</jats:italic> are discussed and compared with available data. The obtained results support the interpretation of chiral doublet bands for the positive-parity doublet bands in <jats:sup>120</jats:sup>I, and hence identify this nucleus as the border of the <jats:italic>A</jats:italic> ≈ 130 island of chiral candidates. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074102
Nucleon effective mass splitting and density-dependent symmetry energy effects on elliptic flow in heavy ion collisions at Elab= 0.09 ~ 1.5 GeV/nucleon *
Luyao Tong; Pengcheng Li; Fupeng Li; Yongjia Wang; Qingfeng Li; Fanxin Liu
<jats:title>Abstract</jats:title> <jats:p>By incorporating an isospin-dependent form of the momentum-dependent potential in the ultra-relativistic quantum molecular dynamics (UrQMD) model, we systematically investigate effects of the neutron-proton effective mass splitting <jats:inline-formula> <jats:tex-math><?CDATA $m_{n-p}^{*}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M1.jpg" xlink:type="simple" /> </jats:inline-formula>= <jats:inline-formula> <jats:tex-math><?CDATA $\frac{m_{n}^{*}-m_{p}^{*}}{m}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and the density-dependent nuclear symmetry energy <jats:inline-formula> <jats:tex-math><?CDATA $E_{\rm{sym}}(\rho)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M3.jpg" xlink:type="simple" /> </jats:inline-formula> on the elliptic flow <jats:inline-formula> <jats:tex-math><?CDATA $v_2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> in <jats:inline-formula> <jats:tex-math><?CDATA $^{197}{{\rm{Au}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M5.jpg" xlink:type="simple" /> </jats:inline-formula> + <jats:inline-formula> <jats:tex-math><?CDATA $^{197}{{\rm{Au}}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M6.jpg" xlink:type="simple" /> </jats:inline-formula> collisions at beam energies from 0.09 to 1.5 GeV/nucleon. It is found that at higher beam energies ( <jats:inline-formula> <jats:tex-math><?CDATA $\geqslant$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M7.jpg" xlink:type="simple" /> </jats:inline-formula> 0.25 GeV <jats:inline-formula> <jats:tex-math><?CDATA $/$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M8.jpg" xlink:type="simple" /> </jats:inline-formula>nucleon) with the approximately 75 MeV difference in slopes of the two different <jats:inline-formula> <jats:tex-math><?CDATA $E_{\rm{sym}}(\rho)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, and the variation of <jats:inline-formula> <jats:tex-math><?CDATA $m_{n-p}^{*}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M10.jpg" xlink:type="simple" /> </jats:inline-formula> ranging from –0.03 to 0.03 at saturation density with isospin asymmetry <jats:inline-formula> <jats:tex-math><?CDATA $\delta=(\rho_{n}-\rho_{p})/\rho=0.2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, the <jats:inline-formula> <jats:tex-math><?CDATA $E_{\rm{sym}}(\rho)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M12.jpg" xlink:type="simple" /> </jats:inline-formula> has a stronger influence on the difference in <jats:inline-formula> <jats:tex-math><?CDATA $v_{2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M13.jpg" xlink:type="simple" /> </jats:inline-formula> between neutrons and protons, i.e., <jats:inline-formula> <jats:tex-math><?CDATA $v_{2}^{n}-v_{2}^{p}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M14.jpg" xlink:type="simple" /> </jats:inline-formula>, than <jats:inline-formula> <jats:tex-math><?CDATA $m_{n-p}^{*}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M15.jpg" xlink:type="simple" /> </jats:inline-formula> has. Meanwhile, at lower beam energies ( <jats:inline-formula> <jats:tex-math><?CDATA $\leqslant$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M16.jpg" xlink:type="simple" /> </jats:inline-formula> 0.25 GeV <jats:inline-formula> <jats:tex-math><?CDATA $/$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M17.jpg" xlink:type="simple" /> </jats:inline-formula>nucleon), <jats:inline-formula> <jats:tex-math><?CDATA $v_{2}^{n}-v_{2}^{p}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M18.jpg" xlink:type="simple" /> </jats:inline-formula> is sensitive to both the <jats:inline-formula> <jats:tex-math><?CDATA $E_{\rm{sym}}(\rho)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M19.jpg" xlink:type="simple" /> </jats:inline-formula> and the <jats:inline-formula> <jats:tex-math><?CDATA $m_{n-p}^{*}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M20.jpg" xlink:type="simple" /> </jats:inline-formula>. Moreover, the influence of <jats:inline-formula> <jats:tex-math><?CDATA $m_{n-p}^{*}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M21.jpg" xlink:type="simple" /> </jats:inline-formula> on <jats:inline-formula> <jats:tex-math><?CDATA $v_{2}^{n}-v_{2}^{p}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074103_M22.jpg" xlink:type="simple" /> </jats:inline-formula> is more evident with the parameters of this study when using the soft, rather than stiff, symmetry energy. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074103
Self-consistent mean field approximation and application in three-flavor NJL model
Zi-Xiong Yu; Tong Zhao; Hong-Shi Zong
<jats:title>Abstract</jats:title> <jats:p>In this study, we apply a self-consistent mean field approximation of the three-flavor Nambu–Jona-Lasinio (NJL) model and compare it with the two-flavor NJL model. The self-consistent mean field approximation introduces a new parameter, <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074104_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, that cannot be fixed in advance by the mean field approach itself. Due to the lack of experimental data, the parameter, <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074104_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, is undetermined. Hence, it is regarded as a free parameter and its influence on the chiral phase transition of strong interaction matter is studied based on this self-consistent mean field approximation. <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> affects numerous properties of the chiral phase transitions, such as the position of the phase transition point and the order of phase transition. Additionally, increasing <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074104_M6.jpg" xlink:type="simple" /> </jats:inline-formula> will decrease the number densities of different quarks and increase the chemical potential at which the number density of the strange quark is non-zero. Finally, we observed that <jats:inline-formula> <jats:tex-math><?CDATA $\alpha$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074104_M7.jpg" xlink:type="simple" /> </jats:inline-formula> affects the equation of state (EOS) of the quark matter, and the sound velocity can be calculated to determine the stiffness of the EOS, which provides a good basis for studying the neutron star mass-radius relationship. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074104
Formation region of emitted α and heavier particles inside radioactive nuclei
W. M. Seif; A. M. H. Abdelhady
<jats:title>Abstract</jats:title> <jats:p>We investigate the formation distance (<jats:italic>R</jats:italic> <jats:sub>0</jats:sub>) from the center of the radioactive parent nucleus at which the emitted cluster is most probably formed. The calculations are performed microscopically starting with the solution to the time-independent Schrödinger wave equation for the cluster-core system, using nuclear potentials based on the Skyrme-SLy4 nucleon-nucleon interactions and folding Coulomb potential, to determine the incident and transmitted wave functions of the system. Our results show that the emitted cluster is mostly formed in the pre-surface region of the nucleus, under the effect of Pauli blocking from the saturated core density. The deeper <jats:italic>α</jats:italic>-formation distance inside the nucleus allows less preformation probability and indicates a more stable nucleus for a longer half-life. Furthermore, the <jats:italic>α</jats:italic>-particle tends to be formed at a slightly deeper region inside the nuclei, with larger isospin asymmetry, and in the closed shell nuclei. Regarding the heavy clusters, we observed that the formation distance of the emitted clusters heavier than <jats:italic>α</jats:italic>-particle increased via increasing the isospin asymmetry of the formed cluster rather than by increasing its mass number. The partial half-life of a certain cluster-decay mode increased with increase of either the mass number or the isospin asymmetry of the emitted cluster. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074105
Chiral magnetic effect for chiral fermion system *
Ren-Da Dong; Ren-Hong Fang; De-Fu Hou; Duan She
<jats:title>Abstract</jats:title> <jats:p>The chiral magnetic effect is concisely derived by employing the Wigner function approach in the chiral fermion system. Subsequently, the chiral magnetic effect is derived by solving the Landau levels of chiral fermions in detail. The second quantization and ensemble average leads to the equation of the chiral magnetic effect for righthand and lefthand fermion systems. The chiral magnetic effect arises uniquely from the contribution of the lowest Landau level. We carefully analyze the lowest Landau level and find that all righthand (chirality is +1) fermions move along the direction of the magnetic field, whereas all lefthand (chirality is −1) fermions move in the opposite direction of the magnetic field. Hence, the chiral magnetic effect can be explained clearly using a microscopic approach.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074106
Novel relativistic mean field Lagrangian guided by pseudo-spin symmetry restoration *
Bin Wei; Qiang Zhao; Zhi-Heng Wang; Jing Geng; Bao-Yuan Sun; Yi-Fei Niu; Wen-Hui Long
<jats:title>Abstract</jats:title> <jats:p>The relativistic mean field (RMF) model has achieved great success in describing various nuclear phenomena. However, several serious defects are common. For instance, the pseudo-spin symmetry of high-<jats:italic>l</jats:italic> orbits is distinctly violated in general, leading to spurious shell closures <jats:inline-formula> <jats:tex-math><?CDATA $ N/Z = 58 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074107_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ 92 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074107_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. This leads to problems in describing structure properties, including shell structures, nuclear masses, etc. Guided by the pseudo-spin symmetry restoration [Geng <jats:italic>et al.</jats:italic>, Phys. Rev. C, <jats:bold>100:</jats:bold> 051301 (2019)], a new RMF Lagrangian DD-LZ1 is developed by considering the density-dependent meson-nucleon coupling strengths. With the newly obtained RMF Lagrangian DD-LZ1, satisfactory descriptions can be obtained for the bulk properties of nuclear matter and finite nuclei. In particular, significant improvements on describing the single-particle spectra are achieved by DD-LZ1. In particular, the spurious shell closures <jats:inline-formula> <jats:tex-math><?CDATA $ Z = 58 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074107_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ 92 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_44_7_074107_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, commonly found in previous RMF calculations, are eliminated by the new effective interaction DD-LZ1, and consistently the pseudo-spin symmetry (PSS) around the Fermi levels is reasonably restored for both low-<jats:italic>l</jats:italic> and high-<jats:italic>l</jats:italic> orbits. Moreover, the description of nuclear masses is also notably improved by DD-LZ1, as compared to the other RMF Lagrangians. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074107