Catálogo de publicaciones - libros

Compartir en
redes sociales


Scientific detectors for astronomy 2005: Explorers of the Photon Odyssey

Jenna E. Beletic ; James W. Beletic ; Paola Amico (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-4329-1

ISBN electrónico

978-1-4020-4330-7

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2006

Cobertura temática

Tabla de contenidos

– Science, Technology and Detectors for Extremely Large Telescopes

Roberto Gilmozzi

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section I - Observatory Status and Plans | Pp. 3-12

- Instruments, Detectors and the Future of Astronomy with Large Ground Based Telescopes

Douglas A. Simons; Paola Amico; Dietrich Baade; Sam Barden; Randall D. Campbell; Gert Finger; Kirk Gilmore; Roland Gredel; Paul Hickson; Steve Howell; Norbert Hubin; Andreas Kaufer; Ralf Kohley; Phillip J. MacQueen; Sergej Markelov; Mike Merrill; Satoshi Miyazaki; Hidehiko Nakaya; Darragh O'Donoghue; Tino Oliva; Andrea Richichi; Derrick Salmon; Ricardo Schmidt; Hongjun Su; Simon Tulloch; Maria Luisa García Vargas; R. Mark Wagner; Olivier Wiecha; Binxun Ye

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section I - Observatory Status and Plans | Pp. 13-44

Requirements on Array Detectors from OWL Instrument Studies

Sandro D'Odorico

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section I - Observatory Status and Plans | Pp. 45-52

Pan-STARRS and Gigapixel Cameras

John L. Tonry; Peter M. Onaka; Barry Burke; Gerard A. Luppino

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section I - Observatory Status and Plans | Pp. 53-62

The Large Synoptic Survey Telescope

D. Kirk Gilmore

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section I - Observatory Status and Plans | Pp. 63-72

Optical Detector Systems at the European Southern Observatory

Dietrich Baade;

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section I - Observatory Status and Plans | Pp. 73-80

The UKIRT Wide Field Camera

Derek Ives

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section I - Observatory Status and Plans | Pp. 81-86

System Design of Detector Systems for a Major Chinese Multi-Object Spectroscopic Sky Surveyor

Binxun Ye; Binhua Li

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section I - Observatory Status and Plans | Pp. 87-92

Near Diffraction Limited Visible Imaging on 10 m class Telescopes with EMCCDs

Craig D. Mackay

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section I - Observatory Status and Plans | Pp. 93-98

Nod & Shuffle 3D Spectroscopy

Martin M. Roth; Nicolas Cardiel; Javier Cenarro; Detlef Schönberner; Matthias Steffen

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section I - Observatory Status and Plans | Pp. 99-108