Catálogo de publicaciones - libros

Compartir en
redes sociales


Scientific detectors for astronomy 2005: Explorers of the Photon Odyssey

Jenna E. Beletic ; James W. Beletic ; Paola Amico (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-4329-1

ISBN electrónico

978-1-4020-4330-7

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2006

Cobertura temática

Tabla de contenidos

CCD Charge Transfer Efficiency (CTE) Derived from Signal Variance in Flat Field Images

Fabrice Christen; Konrad Kuijken; Dietrich Baade; Cyril Cavadore; Sebastian Deiries; Olaf Iwert

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section VI - Detector Testing & Characterization | Pp. 543-548

DC Characterization of CCD-Based Detectors for Use in Space-Based Applications

Robert Philbrick; Morley Blouke

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section VI - Detector Testing & Characterization | Pp. 549-554

Detector Testing Methodologies for Large Focal Planes

Peter Moore; Gustavo Rahmer

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section VI - Detector Testing & Characterization | Pp. 555-560

Calibration of Flight Model CCDs for the Corot mission

Vincent Lapeyrere; Pernelle Bernardi; Jean Tristan Buey

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section VI - Detector Testing & Characterization | Pp. 561-568

NGC Detector Array Controller Based on High Speed Serial Link Technology

Manfred Meyer; Dietrich Baade; Andrea Balestra; Claudio Cumani; Sebastian Deiries; Christoph Geimer; Reinhold J. Dorn; Siegfried Eschbaumer; Gert Finger; Leander H. Mehrgan; Alan Moorwood; Roland Reiss; Javier Reyes; Joerg Stegmeier

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section VII - Electronics | Pp. 571-578

NGC Front-end for CCDs and AO Applications

Javier Reyes; Mark Downing; Leander H. Mehrgan; Manfred Meyer; Ralf Conzelman

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section VII - Electronics | Pp. 579-584

Software for the ESO New General Detector Controller

Claudio Cumani; Andrea Balestra; Joerg Stegmeier

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section VII - Electronics | Pp. 585-588

Keeping Control: PULPO 2

Christoph Geimer; Claudio Cumani; Nicolas Haddad; Javier Reyes; Javier Valenzuela; Bernhard Lopez

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section VII - Electronics | Pp. 589-594

We Must be MAD- Pushing FIERA to its Limits

Roland Reiss; Andrea Balestra; Claudio Cumani; Christoph Geimer; Javier Reyes; Enrico Marchetti; Joana Santos

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section VII - Electronics | Pp. 595-600

256 Channel Data Acquisition System for VISTA Focal Plane to Readout Sixteen 2K×K Raytheon VIRGO Detectors

Leander H. Mehrgan; Nagaraja Bezawada; Reinhold J. Dorn; Siegfried Eschbaumer; Gert Finger; Manfred Meyer; Joerg Stegmeier; Guy Woodhouse

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().

Section VII - Electronics | Pp. 601-606