Catálogo de publicaciones - libros
Scientific detectors for astronomy 2005: Explorers of the Photon Odyssey
Jenna E. Beletic ; James W. Beletic ; Paola Amico (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-4329-1
ISBN electrónico
978-1-4020-4330-7
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer 2006
Cobertura temática
Tabla de contenidos
Characterization of SPAD Arrays: First Results
Massimiliano Belluso; Giovanni Bonanno; Sergio Billotta; Antonio Calì; Salvatore Scuderi; Massimo Cataldo Mazzillo; Piergiorgio G. Fallica; Delfo Sanfilippo; Giovanni Condorelli; Emilio Sciacca; Salvatore Lombardo
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section V - Avalanche Photodiodes | Pp. 469-474
Conversion Gain and Interpixel Capacitance of CMOS Hybrid Focal Plane Arrays
Gert Finger; James W. Beletic; Reinhold J. Dorn; Manfred Meyer; Leander H. Mehrgan; Alan F. M. Moorwood; Joerg Stegmeier
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section VI - Detector Testing & Characterization | Pp. 477-490
MBE MCT Arrays for JWST
Donald N. B. Hall
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section VI - Detector Testing & Characterization | Pp. 491-498
Performance Overview of the VISTA IR Detectors
Nagaraja Bezawada; Derek Ives
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section VI - Detector Testing & Characterization | Pp. 499-506
The Effects of Charge Persistence in Aladdin III InSb Detectors on Scientific Observations
Randall D. Campbell; David J. Thompson
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section VI - Detector Testing & Characterization | Pp. 507-514
An Ultra Low Photon Background 1 to 5 Micron Detector Mosaic Test Facility
Reinhold J. Dorn; Siegfried Eschbaumer; Gert Finger; Jean-Paul Kirchbauer; Leander H. Mehrgan; Manfred Meyer; Armin Silber; Joerg Stegmeier
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section VI - Detector Testing & Characterization | Pp. 515-520
On Sky Experience with the HAWAII-I Detector at the Camera/Spectrograph LIRIS
José A. Acosta-Pulido; Rafael Barrena Delgado; Cristina Ramos Almeida; Arturo Manchado-Torres
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section VI - Detector Testing & Characterization | Pp. 521-526
EMIR Detector Characterization
José Javier Díaz; Fernando Gago; Carlos González-Fernández; Francis Beigbeder; Francisco Garzón; Jesús Patrón
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section VI - Detector Testing & Characterization | Pp. 527-532
Intra-pixel Response of a HAWAII-1RG Multiplexer
Tim Hardy; Marc R. Baril; James S. Stilburn
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section VI - Detector Testing & Characterization | Pp. 533-536
Fast Conversion Factor (Gain) Measurement of a CCD Using Images With Vertical Gradient
Fabrice Christen; Konrad Kuijken; Dietrich Baade; Cyril Cavadore; Sebastian Deiries; Olaf Iwert
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section VI - Detector Testing & Characterization | Pp. 537-542