Catálogo de publicaciones - libros
Scientific detectors for astronomy 2005: Explorers of the Photon Odyssey
Jenna E. Beletic ; James W. Beletic ; Paola Amico (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-4329-1
ISBN electrónico
978-1-4020-4330-7
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer 2006
Cobertura temática
Tabla de contenidos
Optimised CCD Antireflection Coating
Andrew Kelt; Andrew Harris; Paul Jorden; Simon Tulloch
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section III - CCDs | Pp. 369-374
- CMOS Detector Technology
Alan Hoffman; Markus Loose; Vyshnavi Suntharalingham
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section IV - CMOS-Based Sensors | Pp. 377-402
Overview of Rockwell Scientific Imaging Technologies
Michael H. MacDougal; Yibin Bai; Markus Loose; James W. Beletic
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section IV - CMOS-Based Sensors | Pp. 403-410
2K×2K NIR HgCdTe Detector Arrays for VISTA and Other Applications
Peter J. Love; Alan W. Hoffman; Ken J. Ando; Elizabeth Corrales; William D. Ritchie; Neil J. Therrien; Joe P. Rosbeck; Roger S. Holcombe
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section IV - CMOS-Based Sensors | Pp. 411-418
1024×1024 Si:As IBC Detector Arrays for Mid-IR Astronomy
Alan Hoffman; Peter J. Love; Elizabeth Corrales; Nancy A. Lum
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section IV - CMOS-Based Sensors | Pp. 419-424
The James Webb Space Telescope and its Infrared Detectors
Bernard J. Rauscher; Michael E. Ressler
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section IV - CMOS-Based Sensors | Pp. 425-438
Active Pixel Sensor Developments for Future ESA Space Science Missions
Ludovic Duvet; Didier Martin
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section IV - CMOS-Based Sensors | Pp. 439-444
ENERGY: A Proposal for a Multi-Band CMOS Imaging Photometer
Fernando Pedichini; Andrea Di Paola; Roberto Speziali
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section IV - CMOS-Based Sensors | Pp. 445-452
SPADA: An Array of SPAD Detectors for Astrophysical Applications
Giovanni Bonanno; Massimiliano Belluso; Franco Zappa; Simone Tisa; Sergio Cova; Piera Maccagnani; Domenico Bonaccini Calia; Roberto Saletti; Roberto Roncella; Sergio Billotta
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section V - Avalanche Photodiodes | Pp. 455-460
Electro-Optical Characteristics of the Single Photon Avalanche Diode (SPAD)
Massimiliano Belluso; Giovanni Bonanno; Sergio Billotta; Antonio Calì; Salvo Scuderi; Massimo Cataldo Mazzillo; Piergiorgio G. Fallica; Delfo Sanfilippo; Emilio Sciacca; Salvatore Lombardo
The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. ; ; ), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (; ), and the recognition of the potentially disastrous consequences of impacts for human civilization ().
Section V - Avalanche Photodiodes | Pp. 461-468