Catálogo de publicaciones - libros

Compartir en
redes sociales


Medical Image Computing and Computer-Assisted Intervention: MICCAI 2007: 10th International Conference, Brisbane, Australia, October 29: November 2, 2007, Proceedings, Part I

Nicholas Ayache ; Sébastien Ourselin ; Anthony Maeder (eds.)

En conferencia: 10º International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) . Brisbane, QLD, Australia . October 29, 2007 - November 2, 2007

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Image Processing and Computer Vision; Pattern Recognition; Computer Graphics; Artificial Intelligence (incl. Robotics); Imaging / Radiology; Health Informatics

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-75756-6

ISBN electrónico

978-3-540-75757-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2007

Tabla de contenidos

Automatic Trajectory Planning for Deep Brain Stimulation: A Feasibility Study

Ellen J. L. Brunenberg; Anna Vilanova; Veerle Visser-Vandewalle; Yasin Temel; Linda Ackermans; Bram Platel; Bart M. ter Haar Romeny

DBS for Parkinson’s disease involves an extensive planning to find a suitable electrode implantation path to the selected target. We have investigated the feasibility of improving the conventional planning with an automatic calculation of possible paths in 3D. This requires the segmentation of anatomical structures. Subsequently, the paths are calculated and visualized. After selection of a suitable path, the settings for the stereotactic frame are determined. A qualitative evaluation has shown that automatic avoidance of critical structures is feasible. The participating neurosurgeons estimate the time gain to be around 30 minutes.

- Innovative Clinical and Biological Applications - I | Pp. 584-592

Automatic Segmentation of Blood Vessels from Dynamic MRI Datasets

Olga Kubassova

In this paper we present an approach for blood vessel segmentation from dynamic contrast-enhanced MRI datasets of the hand joints acquired from patients with active rheumatoid arthritis. Exclusion of the blood vessels is needed for accurate visualisation of the activation events and objective evaluation of the degree of inflammation. The segmentation technique is based on statistical modelling motivated by the physiological properties of the individual tissues, such as speed of uptake and concentration of the contrast agent; it incorporates Markov random field probabilistic framework and principal component analysis. The algorithm was tested on 60 temporal slices and has shown promising results.

- Innovative Clinical and Biological Applications - I | Pp. 593-600

Automated Planning of Scan Geometries in Spine MRI Scans

Vladimir Pekar; Daniel Bystrov; Harald S. Heese; Sebastian P. M. Dries; Stefan Schmidt; Rüdiger Grewer; Chiel J. den Harder; René C. Bergmans; Arjan W. Simonetti; Arianne M. van Muiswinkel

Consistency of MR scan planning is very important for diagnosis, especially in multi-site trials and follow-up studies, where disease progress or response to treatment is evaluated. Accurate manual scan planning is tedious and requires skillful operators. On the other hand, automated scan planning is difficult due to relatively low quality of survey images (“scouts”) and strict processing time constraints. This paper presents a novel method for automated planning of MRI scans of the spine. Lumbar and cervical examinations are considered, although the proposed method is extendible to other types of spine examinations, such as thoracic or total spine imaging. The automated scan planning (ASP) system consists of an anatomy recognition part, which is able to automatically detect and label the spine anatomy in the scout scan, and a planning part, which performs scan geometry planning based on recognized anatomical landmarks. A validation study demonstrates the robustness of the proposed method and its feasibility for clinical use.

- Innovative Clinical and Biological Applications - I | Pp. 601-608

Cardiac-Motion Compensated MR Imaging and Strain Analysis of Ventricular Trabeculae

Andrew W. Dowsey; Jennifer Keegan; Guang-Zhong Yang

In conventional CMR, bulk cardiac motion causes target structures to move in and out of the static acquisition plane. Due to the partial volume effect, accurate localisation of subtle features through the cardiac cycle, such as the trabeculae and papillary muscles, is difficult. This problem is exacerbated by the short acquisition window necessary to avoid motion blur and ghosting, especially during early systole. This paper presents an adaptive imaging approach with COMB multi-tag tracking that follows true 3D motion of the myocardium so that the same tissue slice is imaged throughout the cine acquisition. The technique is demonstrated with motion-compensated multi-slice imaging of ventricles, which allows for tracked visualisation and analysis of the trabeculae and papillary muscles for the first time. This enables novel measurement of circumferential and radial strain for trabeculation and papillary muscle contractility. These statistics will facilitate the evaluation of diseases such as mitral valve insufficiency and ischemic heart disease. The adaptive imaging technique will also have significant implications for CMR in general, including motion-compensated quantification of myocardial perfusion and blood flow, and motion-correction of sequences with long acquisition windows.

- Innovative Clinical and Biological Applications - I | Pp. 609-616

High Throughput Analysis of Breast Cancer Specimens on the Grid

Lin Yang; Wenjin Chen; Peter Meer; Gratian Salaru; Michael D. Feldman; David J. Foran

Breast cancer accounts for about 30% of all cancers and 15% of all cancer deaths in women in the United States. Advances in computer assisted diagnosis (CAD) holds promise for early detecting and staging disease progression. In this paper we introduce a Grid-enabled CAD to perform automatic analysis of imaged histopathology breast tissue specimens. More than 100,000 digitized samples (1200×1200 pixels) have already been processed on the Grid. We have analyzed results for 3744 breast tissue samples, which were originated from four different institutions using diaminobenzidine (DAB) and hematoxylin staining. Both linear and nonlinear dimension reduction techniques are compared, and the best one (ISOMAP) was applied to reduce the dimensionality of the features. The experimental results show that the Gentle Boosting using an eight node CART decision tree as the weak learner provides the best result for classification. The algorithm has an accuracy of 86.02% using only 20% of the specimens as the training set.

- Innovative Clinical and Biological Applications - I | Pp. 617-625

Thoracic CT-PET Registration Using a 3D Breathing Model

Antonio Moreno; Sylvie Chambon; Anand P. Santhanam; Roberta Brocardo; Patrick Kupelian; Jannick P. Rolland; Elsa Angelini; Isabelle Bloch

In the context of thoracic CT-PET volume registration, we present a novel method to incorporate a breathing model in a non-linear registration procedure, guaranteeing physiologically plausible deformations. The approach also accounts for the rigid motions of lung tumors during breathing. We performed a set of registration experiments on one healthy and four pathological data sets. Initial results demonstrate the interest of this method to significantly improve the accuracy of multi-modal volume registration for diagnosis and radiotherapy applications.

- Physiology and Physics-based Image Computing | Pp. 626-633

Quantification of Blood Flow from Rotational Angiography

I. Waechter; J. Bredno; D. C. Barratt; J. Weese; David J. Hawkes

For assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) information on vessel morphology and hemodynamics. Rotational angiography is routinely used to determine the 3D geometry and we propose a method to exploit the same acquisition to determine the blood flow waveform and the mean volumetric flow rate. The method uses a model of contrast agent dispersion to determine the flow parameters from the spatial and temporal development of the contrast agent concentration, represented by a flow map. Furthermore, it also overcomes artifacts due to the rotation of the c-arm using a newly introduced reliability map. The method was validated on images from a computer simulation and from a phantom experiment. With a mean error of 11.0% for the mean volumetric flow rate and 15.3% for the blood flow waveform from the phantom experiments, we conclude that the method has the potential to give quantitative estimates of blood flow parameters during cerebrovascular interventions.

- Physiology and Physics-based Image Computing | Pp. 634-641

Modeling Glioma Growth and Mass Effect in 3D MR Images of the Brain

Cosmina Hogea; Christos Davatzikos; George Biros

In this article, we propose a framework for modeling glioma growth and the subsequent mechanical impact on the surrounding brain tissue (mass-effect) in a medical imaging context. Glioma growth is modeled via nonlinear reaction-advection-diffusion, with a two-way coupling with the underlying tissue elastic deformation. Tumor bulk and infiltration and subsequent mass-effects are not regarded separately, but captured by the model itself in the course of its evolution. Our formulation is fully Eulerian and naturally allows for updating the tumor diffusion coefficient following structural displacements caused by tumor growth/infiltration. We show that model parameters can be estimated via optimization based on imaging data, using efficient solution algorithms on regular grids. We test the model and the automatic optimization framework on real brain tumor data sets, achieving significant improvement in landmark prediction compared to a simplified purely mechanical approach.

- Physiology and Physics-based Image Computing | Pp. 642-650

Towards Tracking Breast Cancer Across Medical Images Using Subject-Specific Biomechanical Models

Vijay Rajagopal; Angela Lee; Jae-Hoon Chung; Ruth Warren; Ralph P. Highnam; Poul M. F. Nielsen; Martyn P. Nash

Breast cancer detection, diagnosis and treatment increasingly involves images of the breast taken with different degrees of breast deformation. We introduce a new biomechanical modelling framework for predicting breast deformation and thus aiding the combination of information derived from the various images. In this paper, we focus on MR images of the breast under different loading conditions, and consider methods to map information between the images.

We generate subject-specific finite element models of the breast by semi-automatically fitting geometrical models to segmented data from breast MR images, and characterizing the subject-specific mechanical properties of the breast tissues. We identified the unloaded reference configuration of the breast by acquiring MR images of the breast under neutral buoyancy (immersed in water). Such imaging is clearly not practical in the clinical setting, however this previously unavailable data provides us with important data with which to validate models of breast biomechanics, and provides a common configuration with which to refer and interpret all breast images.

We demonstrate our modelling framework using a pilot study that was conducted to assess the mechanical performance of a subject-specific homogeneous biomechanical model in predicting deformations of the breast of a volunteer in a prone gravity-loaded configuration. The model captured the gross characteristics of the breast deformation with an RMS error of 4.2 mm in predicting the skin surface of the gravity-loaded shape, which included tissue displacements of over 20 mm. Internal tissue features identified from the MR images were tracked from the reference state to the prone gravity-loaded configuration with a mean error of 3.7 mm. We consider the modelling assumptions and discuss how the framework could be refined in order to further improve the tissue tracking accuracy.

- Physiology and Physics-based Image Computing | Pp. 651-658

Inter-subject Modelling of Liver Deformation During Radiation Therapy

M. von Siebenthal; Gáber Székely; A. Lomax; Philippe C. Cattin

This paper presents a statistical model of the liver deformation that occurs in addition to the quasi-periodic respiratory motion. Having an elastic but still compact model of this variability is an important step towards reliable targeting in radiation therapy. To build this model, the deformation of the liver at exhalation was determined for 12 volunteers over roughly one hour using 4DMRI and subsequent non-rigid registration. The correspondence between subjects was established based on mechanically relevant landmarks on the liver surface. Leave-one-out experiments were performed to evaluate the accuracy in predicting the liver deformation from partial information, such as a point tracked by ultrasound imaging. Already predictions from a single point strongly reduced the localisation errors, whilst the method is robust with respect to the exact choice of the measured predictor.

- Physiology and Physics-based Image Computing | Pp. 659-666