Se emplean metodologías del Modelado Molecular a fin de seleccionar, en algunos casos, y diseñar, en otros, moléculas con potenciales aplicaciones previamente esperadas. En la primera parte, aprovechando las propiedades inusuales de derivados de bases de Tröger, se explorará su potencial como diferentes dispositivos moleculares, entre ellas su potencial aplicación como moléculas antena para celdas solares sensibilizadas por colorantes orgánicos (organic DSSCs). Dichas peculiaridades residen fundamentalmente en su forma molecular, quiral aún sin carbonos asimétricos, su geometría en forma de "V", considerable rigidez y principalmente sus propiedades de transporte selectivo de carga. En especial este último aspecto permite esperar una fotoquímica también inusual, como se verá en el Capítulo 3. A este fin se propone un conjunto de posibles sistema donor/aceptor, puenteado por bases de Tröger y se elegirán, aquellas que resulten más prometedoras y también más accesibles sintéticamente para su estudio interdisciplinario en colaboración con un grupo especializado en síntesis y el grupo del Codirector, que realizará los ensayos fotofísicos y fotoquímicos. En esta instancia, se busca un sistema "prueba de principios" de sistema Donor-puente Tröger ? Aceptor con un paradigma diferente al utilizado hasta ahora en DSSCs orgánicas, es decir el esquema Donor- puente conjugado p ? Aceptor. En este diseño el puente no sólo comunica electrónicamente los centros redox sino que podría ejercer un control sobre la separación de cargas inicial, su recombinación, su fotofísica e incluso participar como núcleo foto/electroactivo. Estudios preliminares en el grupo de investigación, permitieron demostrar que en ocasiones, este puente alifático puede actuar como un eficiente conector o "cable" entre los centros redox (sorprendentemente como lo haría un sistema p conjugado) y en otras como un aislante, o sea como un puente con un acoplamiento débil, típico de los puentes alifáticos.El modelado puede predecir o estimar a un nivel de detalle profundo estas propiedades en una gran variedad de díadas donor-puente-aceptor, pero su síntesis resulta dificultosa, involucrando un mecanismo con un número elevado de etapas, partiendo de anilinas sustituidas, un mecanismo que no fue descripto hasta el presente en forma detallada, paso a paso, más allá de propuestas incompletas e incluso contradictorias. Por lo tanto, además se estudiará empleando métodos de Química Cuántica de DFT en detalle el mecanismo de reacción que lleva a la síntesis de díadas simétricas y asimétricas (Capítulo 4). Esta descripción intenta facilitar el diseño de las mejores condiciones y estrategias de síntesis sobre bases racionales, es decir conociendo cada etapa elemental de todas la vías razonables posibles para su formación.En la segunda parte, se aplicarán métodos de modelado para comprender el mecanismo de inhibición de la proteína P-gp humana, una bomba de eflujo transmembrana del tipo ABC, que promueve la resistencia a múltiples drogas (MDR), un obstáculo fundamental que diluye la efectividad de tratamientos antitumorales, puesto que se sobreexpresa en la mayoría de los tipos de cánceres en algún estadío. Como alternativa a los inhibidores potentes pero altamente tóxicos, característica que no ha permitido su uso clínico, se partirá de compuestos aislados de plantas autóctonas y naturalizadas de la región central de Argentina. La descripción del mecanismo de inhibición a nivel molecular permitirá proponer diversas derivatizaciones a fin de aumentar la potencia de un producto obtenido de Melia azedarach y la búsqueda de compuestos por similaridad química para su estudio in sílico. Estos estudios se llevaron a cabo en colaboración interdisciplinaria con el grupo de la Prof. María Cecilia Carpinella de la Universidad Católica de Córdoba (UCC). Los compuestos más prometedores se adquirieron o sintetizaron y se logró obtener nuevos líderes, más efectivos que el producto natural primariamente estudiado.