Catálogo de publicaciones - revistas

Compartir en
redes sociales


Science

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde mar. 1997 / hasta dic. 2023 Science Journals

Información

Tipo de recurso:

revistas

ISSN impreso

0036-8075

ISSN electrónico

1095-9203

Editor responsable

American Association for the Advancement of Science (AAAS)

País de edición

Estados Unidos

Fecha de publicación

Cobertura temática

Tabla de contenidos

Community instability in the microbial world

Matthias Huelsmann; Martin Ackermann

<jats:p>Miniature ecosystems provide insights into general ecological principles</jats:p>

Palabras clave: Multidisciplinary.

Pp. 29-30

Why nations lead or lag in energy transitions

Jonas Meckling; Phillip Y. Lipscy; Jared J. Finnegan; Florence Metz

<jats:p>Policy-driven change hinges on institutions that support insulation or compensation</jats:p>

Palabras clave: Multidisciplinary.

Pp. 31-33

Toward a more inclusive internet The Equality Machine Orly Lobel PublicAffairs, 2022. 368 pp.

Dov Greenbaum

<jats:p>Expecting perfection impedes progress in the march toward digital equality, argues a legal scholar</jats:p>

Palabras clave: Multidisciplinary.

Pp. 34-34

Partisanship and the pandemic Pandemic Politics Shana Kushner Gadarian, Sara Wallace Goodman, and Thomas B. Pepinsky Princeton University Press, 2022. 400 pp.

Matthew S. Levendusky

<jats:p>Political polarization shaped attitudes and outcomes related to COVID-19</jats:p>

Palabras clave: Multidisciplinary.

Pp. 35-35

In Other Journals

Caroline Ash; Jesse Smith (eds.)

<jats:p>Editors’ selections from the current scientific literature</jats:p>

Palabras clave: Multidisciplinary.

Pp. 37-38

Electrochemical potential enables dormant spores to integrate environmental signals

Kaito KikuchiORCID; Leticia Galera-LaportaORCID; Colleen Weatherwax; Jamie Y. LamORCID; Eun Chae MoonORCID; Emmanuel A. TheodorakisORCID; Jordi Garcia-OjalvoORCID; Gürol M. SüelORCID

<jats:p> The dormant state of bacterial spores is generally thought to be devoid of biological activity. We show that despite continued dormancy, spores can integrate environmental signals over time through a preexisting electrochemical potential. Specifically, we studied thousands of individual <jats:italic>Bacillus subtilis</jats:italic> spores that remain dormant when exposed to transient nutrient pulses. Guided by a mathematical model of bacterial electrophysiology, we modulated the decision to exit dormancy by genetically and chemically targeting potassium ion flux. We confirmed that short nutrient pulses result in step-like changes in the electrochemical potential of persistent spores. During dormancy, spores thus gradually release their stored electrochemical potential to integrate extracellular information over time. These findings reveal a decision-making mechanism that operates in physiologically inactive cells. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 43-49

Hallucinating symmetric protein assemblies

B. I. M. WickyORCID; L. F. MillesORCID; A. CourbetORCID; R. J. RagotteORCID; J. DauparasORCID; E. KinfuORCID; S. TippsORCID; R. D. KiblerORCID; M. BaekORCID; F. DiMaioORCID; X. LiORCID; L. CarterORCID; A. KangORCID; H. NguyenORCID; A. K. BeraORCID; D. BakerORCID

<jats:p> Deep learning generative approaches provide an opportunity to broadly explore protein structure space beyond the sequences and structures of natural proteins. Here, we use deep network hallucination to generate a wide range of symmetric protein homo-oligomers given only a specification of the number of protomers and the protomer length. Crystal structures of seven designs are very similar to the computational models (median root mean square deviation: 0.6 angstroms), as are three cryo–electron microscopy structures of giant 10-nanometer rings with up to 1550 residues and <jats:italic>C</jats:italic> <jats:sub>33</jats:sub> symmetry; all differ considerably from previously solved structures. Our results highlight the rich diversity of new protein structures that can be generated using deep learning and pave the way for the design of increasingly complex components for nanomachines and biomaterials. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 56-61

A noncoding single-nucleotide polymorphism at 8q24 drives IDH1 -mutant glioma formation

Connor YanchusORCID; Kristen L. DruckerORCID; Thomas M. KollmeyerORCID; Ricky TsaiORCID; Warren Winick-NgORCID; Minggao LiangORCID; Ahmad Malik; Judy PawlingORCID; Silvana B. De Lorenzo; Asma Ali; Paul A. DeckerORCID; Matt L. Kosel; Arijit PandaORCID; Khalid N. Al-ZahraniORCID; Lingyan Jiang; Jared W. L. BrowningORCID; Chris LowdenORCID; Michael Geuenich; J. Javier HernandezORCID; Jessica T. Gosio; Musaddeque AhmedORCID; Sampath Kumar LoganathanORCID; Jacob BermanORCID; Daniel TrckaORCID; Kulandaimanuvel Antony Michealraj; Jerome Fortin; Brittany Carson; Ethan W. HollingsworthORCID; Sandra Jacinto; Parisa Mazrooei; Lily Zhou; Andrew EliaORCID; Mathieu LupienORCID; Housheng Hansen HeORCID; Daniel J. Murphy; Liguo WangORCID; Alexej AbyzovORCID; James W. DennisORCID; Philipp G. MaassORCID; Kieran Campbell; Michael D. WilsonORCID; Daniel H. Lachance; Margaret WrenschORCID; John Wiencke; Tak MakORCID; Len A. PennacchioORCID; Diane E. DickelORCID; Axel ViselORCID; Jeffrey WranaORCID; Michael D. Taylor; Gelareh Zadeh; Peter DirksORCID; Jeanette E. Eckel-PassowORCID; Liliana AttisanoORCID; Ana PomboORCID; Cristiane M. IdaORCID; Evgeny Z. KvonORCID; Robert B. JenkinsORCID; Daniel SchramekORCID

<jats:p> Establishing causal links between inherited polymorphisms and cancer risk is challenging. Here, we focus on the single-nucleotide polymorphism rs55705857, which confers a sixfold greater risk of isocitrate dehydrogenase ( <jats:italic>IDH)</jats:italic> –mutant low-grade glioma (LGG). We reveal that rs55705857 itself is the causal variant and is associated with molecular pathways that drive LGG. Mechanistically, we show that rs55705857 resides within a brain-specific enhancer, where the risk allele disrupts OCT2/4 binding, allowing increased interaction with the <jats:italic>Myc</jats:italic> promoter and increased <jats:italic>Myc</jats:italic> expression. Mutating the orthologous mouse rs55705857 locus accelerated tumor development in an <jats:italic>Idh1</jats:italic> <jats:sup>R132H</jats:sup> -driven LGG mouse model from 472 to 172 days and increased penetrance from 30% to 75%. Our work reveals mechanisms of the heritable predisposition to lethal glioma in ~40% of LGG patients. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 68-78

Machine learning–enabled high-entropy alloy discovery

Ziyuan RaoORCID; Po-Yen TungORCID; Ruiwen XieORCID; Ye WeiORCID; Hongbin ZhangORCID; Alberto FerrariORCID; T.P.C. Klaver; Fritz KörmannORCID; Prithiv Thoudden SukumarORCID; Alisson Kwiatkowski da SilvaORCID; Yao ChenORCID; Zhiming LiORCID; Dirk PongeORCID; Jörg NeugebauerORCID; Oliver Gutfleisch; Stefan BauerORCID; Dierk RaabeORCID

<jats:p> High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching composition and property regimes inaccessible for dilute materials. Discovering those with valuable properties, however, too often relies on serendipity, because thermodynamic alloy design rules alone often fail in high-dimensional composition spaces. We propose an active learning strategy to accelerate the design of high-entropy Invar alloys in a practically infinite compositional space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with density-functional theory, thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys out of millions of possible compositions, we identified two high-entropy Invar alloys with extremely low thermal expansion coefficients around 2 × 10 <jats:sup>−6</jats:sup> per degree kelvin at 300 kelvin. We believe this to be a suitable pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic, and electrical properties. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 78-85

Emergent phases of ecological diversity and dynamics mapped in microcosms

Jiliang HuORCID; Daniel R. AmorORCID; Matthieu BarbierORCID; Guy BuninORCID; Jeff GoreORCID

<jats:p>From tropical forests to gut microbiomes, ecological communities host notably high numbers of coexisting species. Beyond high biodiversity, communities exhibit a range of complex dynamics that are difficult to explain under a unified framework. Using bacterial microcosms, we performed a direct test of theory predicting that simple community-level features dictate emergent behaviors of communities. As either the number of species or the strength of interactions increases, we show that microbial ecosystems transition between three distinct dynamical phases, from a stable equilibrium in which all species coexist to partial coexistence to emergence of persistent fluctuations in species abundances, in the order predicted by theory. Under fixed conditions, high biodiversity and fluctuations reinforce each other. Our results demonstrate predictable emergent patterns of diversity and dynamics in ecological communities.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 85-89