Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature

Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com
No detectada desde jul. 2006 / hasta ago. 2012 Ovid

Información

Tipo de recurso:

revistas

ISSN impreso

0028-0836

ISSN electrónico

1476-4687

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Scientists call out rogue emissions from China at global ozone summit

Jeff Tollefson

Palabras clave: Multidisciplinary.

Pp. No disponible

How big quantum computers could keep their qubits under control

Palabras clave: Multidisciplinary.

Pp. No disponible

Staring at the Sun — close-up images from space rewrite solar science

Alexandra Witze

Palabras clave: Multidisciplinary.

Pp. 684-685

Living guidelines for generative AI — why scientists must oversee its use

Claudi L. Bockting; Eva A. M. van Dis; Robert van Rooij; Willem Zuidema; Johan Bollen

Palabras clave: Multidisciplinary.

Pp. 693-696

Deep Mars is surprisingly soft

Suzan van der Lee

Palabras clave: Multidisciplinary.

Pp. 699-700

Geophysical evidence for an enriched molten silicate layer above Mars’s core

Henri SamuelORCID; Mélanie DrilleauORCID; Attilio RivoldiniORCID; Zongbo Xu; Quancheng Huang; Raphaël F. GarciaORCID; Vedran Lekić; Jessica C. E. IrvingORCID; James BadroORCID; Philippe H. LognonnéORCID; James A. D. ConnollyORCID; Taichi KawamuraORCID; Tamara Gudkova; William B. BanerdtORCID

<jats:title>Abstract</jats:title><jats:p>The detection of deep reflected S waves on Mars inferred a core size of 1,830 ± 40 km (ref. <jats:sup>1</jats:sup>), requiring light-element contents that are incompatible with experimental petrological constraints. This estimate assumes a compositionally homogeneous Martian mantle, at odds with recent measurements of anomalously slow propagating P waves diffracted along the core–mantle boundary<jats:sup>2</jats:sup>. An alternative hypothesis is that Mars’s mantle is heterogeneous as a consequence of an early magma ocean that solidified to form a basal layer enriched in iron and heat-producing elements. Such enrichment results in the formation of a molten silicate layer above the core, overlain by a partially molten layer<jats:sup>3</jats:sup>. Here we show that this structure is compatible with all geophysical data, notably (1) deep reflected and diffracted mantle seismic phases, (2) weak shear attenuation at seismic frequency and (3) Mars’s dissipative nature at Phobos tides. The core size in this scenario is 1,650 ± 20 km, implying a density of 6.5 g cm<jats:sup>−3</jats:sup>, 5–8% larger than previous seismic estimates, and can be explained by fewer, and less abundant, alloying light elements than previously required, in amounts compatible with experimental and cosmochemical constraints. Finally, the layered mantle structure requires external sources to generate the magnetic signatures recorded in Mars’s crust.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 712-717

Dipolar quantum solids emerging in a Hubbard quantum simulator

Lin SuORCID; Alexander Douglas; Michal SzurekORCID; Robin GrothORCID; S. Furkan OzturkORCID; Aaron Krahn; Anne H. Hébert; Gregory A. Phelps; Sepehr Ebadi; Susannah Dickerson; Francesca FerlainoORCID; Ognjen Marković; Markus GreinerORCID

Palabras clave: Multidisciplinary.

Pp. 724-729

A microfluidic transistor for automatic control of liquids

Kaustav A. GopinathanORCID; Avanish Mishra; Baris R. Mutlu; Jon F. Edd; Mehmet TonerORCID

<jats:title>Abstract</jats:title><jats:p>Microfluidics have enabled notable advances in molecular biology<jats:sup>1,2</jats:sup>, synthetic chemistry<jats:sup>3,4</jats:sup>, diagnostics<jats:sup>5,6</jats:sup> and tissue engineering<jats:sup>7</jats:sup>. However, there has long been a critical need in the field to manipulate fluids and suspended matter with the precision, modularity and scalability of electronic circuits<jats:sup>8–10</jats:sup>. Just as the electronic transistor enabled unprecedented advances in the automatic control of electricity on an electronic chip, a microfluidic analogue to the transistor could enable improvements in the automatic control of reagents, droplets and single cells on a microfluidic chip. Previous works on creating a microfluidic analogue to the electronic transistor<jats:sup>11–13</jats:sup> did not replicate the transistor’s saturation behaviour, and could not achieve proportional amplification<jats:sup>14</jats:sup>, which is fundamental to modern circuit design<jats:sup>15</jats:sup>. Here we exploit the fluidic phenomenon of flow limitation<jats:sup>16</jats:sup> to develop a microfluidic element capable of proportional amplification with flow–pressure characteristics completely analogous to the current–voltage characteristics of the electronic transistor. We then use this microfluidic transistor to directly translate fundamental electronic circuits into the fluidic domain, including the amplifier, regulator, level shifter, logic gate and latch. We also combine these building blocks to create more complex fluidic controllers, such as timers and clocks. Finally, we demonstrate a particle dispenser circuit that senses single suspended particles, performs signal processing and accordingly controls the movement of each particle in a deterministic fashion without electronics. By leveraging the vast repertoire of electronic circuit design, microfluidic-transistor-based circuits enable fluidic automatic controllers to manipulate liquids and single suspended particles for lab-on-a-chip platforms.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 735-741

On the origin of diffuse intensities in fcc electron diffraction patterns

Francisco Gil CouryORCID; Cody Miller; Robert Field; Michael KaufmanORCID

Palabras clave: Multidisciplinary.

Pp. 742-747

Injectable tissue prosthesis for instantaneous closed-loop rehabilitation

Subin JinORCID; Heewon Choi; Duhwan Seong; Chang-Lim You; Jong-Sun Kang; Seunghyok Rho; Won Bo LeeORCID; Donghee SonORCID; Mikyung ShinORCID

Palabras clave: Multidisciplinary.

Pp. 58-65