Catálogo de publicaciones - revistas
Nature
Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 2012 / hasta dic. 2023 | Nature.com | ||
No detectada | desde jul. 2006 / hasta ago. 2012 | Ovid |
Información
Tipo de recurso:
revistas
ISSN impreso
0028-0836
ISSN electrónico
1476-4687
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
1869-
Tabla de contenidos
Scientists call out rogue emissions from China at global ozone summit
Jeff Tollefson
Palabras clave: Multidisciplinary.
Pp. No disponible
How big quantum computers could keep their qubits under control
Palabras clave: Multidisciplinary.
Pp. No disponible
Staring at the Sun — close-up images from space rewrite solar science
Alexandra Witze
Palabras clave: Multidisciplinary.
Pp. 684-685
Living guidelines for generative AI — why scientists must oversee its use
Claudi L. Bockting; Eva A. M. van Dis; Robert van Rooij; Willem Zuidema; Johan Bollen
Palabras clave: Multidisciplinary.
Pp. 693-696
Deep Mars is surprisingly soft
Suzan van der Lee
Palabras clave: Multidisciplinary.
Pp. 699-700
Geophysical evidence for an enriched molten silicate layer above Mars’s core
Henri Samuel; Mélanie Drilleau; Attilio Rivoldini; Zongbo Xu; Quancheng Huang; Raphaël F. Garcia; Vedran Lekić; Jessica C. E. Irving; James Badro; Philippe H. Lognonné; James A. D. Connolly; Taichi Kawamura; Tamara Gudkova; William B. Banerdt
<jats:title>Abstract</jats:title><jats:p>The detection of deep reflected S waves on Mars inferred a core size of 1,830 ± 40 km (ref. <jats:sup>1</jats:sup>), requiring light-element contents that are incompatible with experimental petrological constraints. This estimate assumes a compositionally homogeneous Martian mantle, at odds with recent measurements of anomalously slow propagating P waves diffracted along the core–mantle boundary<jats:sup>2</jats:sup>. An alternative hypothesis is that Mars’s mantle is heterogeneous as a consequence of an early magma ocean that solidified to form a basal layer enriched in iron and heat-producing elements. Such enrichment results in the formation of a molten silicate layer above the core, overlain by a partially molten layer<jats:sup>3</jats:sup>. Here we show that this structure is compatible with all geophysical data, notably (1) deep reflected and diffracted mantle seismic phases, (2) weak shear attenuation at seismic frequency and (3) Mars’s dissipative nature at Phobos tides. The core size in this scenario is 1,650 ± 20 km, implying a density of 6.5 g cm<jats:sup>−3</jats:sup>, 5–8% larger than previous seismic estimates, and can be explained by fewer, and less abundant, alloying light elements than previously required, in amounts compatible with experimental and cosmochemical constraints. Finally, the layered mantle structure requires external sources to generate the magnetic signatures recorded in Mars’s crust.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 712-717
Dipolar quantum solids emerging in a Hubbard quantum simulator
Lin Su; Alexander Douglas; Michal Szurek; Robin Groth; S. Furkan Ozturk; Aaron Krahn; Anne H. Hébert; Gregory A. Phelps; Sepehr Ebadi; Susannah Dickerson; Francesca Ferlaino; Ognjen Marković; Markus Greiner
Palabras clave: Multidisciplinary.
Pp. 724-729
A microfluidic transistor for automatic control of liquids
Kaustav A. Gopinathan; Avanish Mishra; Baris R. Mutlu; Jon F. Edd; Mehmet Toner
<jats:title>Abstract</jats:title><jats:p>Microfluidics have enabled notable advances in molecular biology<jats:sup>1,2</jats:sup>, synthetic chemistry<jats:sup>3,4</jats:sup>, diagnostics<jats:sup>5,6</jats:sup> and tissue engineering<jats:sup>7</jats:sup>. However, there has long been a critical need in the field to manipulate fluids and suspended matter with the precision, modularity and scalability of electronic circuits<jats:sup>8–10</jats:sup>. Just as the electronic transistor enabled unprecedented advances in the automatic control of electricity on an electronic chip, a microfluidic analogue to the transistor could enable improvements in the automatic control of reagents, droplets and single cells on a microfluidic chip. Previous works on creating a microfluidic analogue to the electronic transistor<jats:sup>11–13</jats:sup> did not replicate the transistor’s saturation behaviour, and could not achieve proportional amplification<jats:sup>14</jats:sup>, which is fundamental to modern circuit design<jats:sup>15</jats:sup>. Here we exploit the fluidic phenomenon of flow limitation<jats:sup>16</jats:sup> to develop a microfluidic element capable of proportional amplification with flow–pressure characteristics completely analogous to the current–voltage characteristics of the electronic transistor. We then use this microfluidic transistor to directly translate fundamental electronic circuits into the fluidic domain, including the amplifier, regulator, level shifter, logic gate and latch. We also combine these building blocks to create more complex fluidic controllers, such as timers and clocks. Finally, we demonstrate a particle dispenser circuit that senses single suspended particles, performs signal processing and accordingly controls the movement of each particle in a deterministic fashion without electronics. By leveraging the vast repertoire of electronic circuit design, microfluidic-transistor-based circuits enable fluidic automatic controllers to manipulate liquids and single suspended particles for lab-on-a-chip platforms.</jats:p>
Palabras clave: Multidisciplinary.
Pp. 735-741
On the origin of diffuse intensities in fcc electron diffraction patterns
Francisco Gil Coury; Cody Miller; Robert Field; Michael Kaufman
Palabras clave: Multidisciplinary.
Pp. 742-747