Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Cross-sections for the 27Al(γ, x)22Na multichannel reaction with the 28.3 MeV difference of reaction thresholds

O.S. Deiev; I.S. Timchenko; S.N. Olejnik; V.A. Kushnir; V.V. Mytrochenko; S.A. Perezhogin

<jats:title>Abstract</jats:title> <jats:p>The bremsstrahlung flux-averaged cross-sections <jats:inline-formula> <jats:tex-math><?CDATA $\langle{\sigma(E_{{\gamma {\rm{max}}}})}\rangle$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064002_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and the cross-sections per equivalent photon <jats:inline-formula> <jats:tex-math><?CDATA $\langle{\sigma(E_{{\gamma {\rm{max}}}})_{Q}}\rangle$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064002_M2.jpg" xlink:type="simple" /> </jats:inline-formula> were first measured for the photonuclear multichannel reaction <jats:inline-formula> <jats:tex-math><?CDATA ${^{27}{\rm{Al}}}(\gamma,\textit{x})^{22}{\rm{Na}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064002_M3.jpg" xlink:type="simple" /> </jats:inline-formula> at end-point bremsstrahlung gamma energies ranging from 35 MeV to 95 MeV. The experiments were performed with the beam from the NSC KIPT electron linear accelerator LUE-40 using the <jats:italic>γ</jats:italic>-activation technique. The bremsstrahlung quantum flux was calculated with the GEANT4.9.2 program and was also monitored via the <jats:inline-formula> <jats:tex-math><?CDATA $^{100}{\rm{Mo}}(\gamma,{n})^{99}{\rm{Mo}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064002_M5.jpg" xlink:type="simple" /> </jats:inline-formula> reaction. The flux-averaged cross-sections were calculated using the partial cross-section <jats:inline-formula> <jats:tex-math><?CDATA $\sigma(E)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064002_M6.jpg" xlink:type="simple" /> </jats:inline-formula> values computed with the TALYS1.95 code for different level density models. Consideration is given to special features of calculating the cross-sections <jats:inline-formula> <jats:tex-math><?CDATA $\langle{\sigma(E_{{\gamma {\rm{max}}}})}\rangle$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064002_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\langle{\sigma(E_{{\gamma {\rm{max}}}})_{Q}}\rangle$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064002_M8.jpg" xlink:type="simple" /> </jats:inline-formula> for the case of the final nucleus <jats:inline-formula> <jats:tex-math><?CDATA $^{22}{\rm{Na}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064002_M9.jpg" xlink:type="simple" /> </jats:inline-formula> via several partial channels <jats:inline-formula> <jats:tex-math><?CDATA $\textit{x}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064002_M10.jpg" xlink:type="simple" /> </jats:inline-formula>: <jats:inline-formula> <jats:tex-math><?CDATA ${n}\alpha + {dt} + {npt} + 2{n}{^{3}\text{He}} + {n2d} + {2npd} + {2p3n}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064002_M11.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064002

Evolution of nuclear charge radii in copper and indium isotopes *

Rong An; Xiang Jiang; Li-Gang Cao; Feng-Shou Zhang

<jats:title>Abstract</jats:title> <jats:p>Systematic trends in nuclear charge radii are of great interest due to universal shell effects and odd-even staggering (OES). The modified root mean square (rms) charge radius formula, which phenomenologically accounts for the formation of neutron-proton (<jats:italic>np</jats:italic>) correlations, is here applied for the first time to the study of odd-<jats:italic>Z</jats:italic> copper and indium isotopes. Theoretical results obtained by the relativistic mean field (RMF) model with NL3, PK1 and NL3<jats:sup>*</jats:sup> parameter sets are compared with experimental data. Our results show that both OES and the abrupt changes across <jats:inline-formula> <jats:tex-math><?CDATA $ N = 50 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and 82 shell closures are clearly reproduced in nuclear charge radii. The inverted parabolic-like behaviors of rms charge radii can also be described remarkably well between two neutron magic numbers, namely <jats:inline-formula> <jats:tex-math><?CDATA $ N = 28 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064101_M2.jpg" xlink:type="simple" /> </jats:inline-formula> to 50 for copper isotopes and <jats:inline-formula> <jats:tex-math><?CDATA $ N = 50 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064101_M3.jpg" xlink:type="simple" /> </jats:inline-formula> to 82 for indium isotopes. This implies that the <jats:italic>np</jats:italic>-correlations play an indispensable role in quantitatively determining the fine structures of nuclear charge radii along odd-<jats:italic>Z</jats:italic> isotopic chains. Also, our conclusions have almost no dependence on the effective forces. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064101

Quenching of single-particle strengths of carbon isotopes 9-12,14-20C with knockout reactions for incident energies 43–2100 MeV/nucleon *

Yi-Ping Xu; Dan-Yang Pang; Cen-Xi Yuan; Xiao-Yan Yun

<jats:title>Abstract</jats:title> <jats:p>To study the quenching of single-particle strengths of carbon isotopes, a systematic analysis is performed for <jats:sup>9-12,14-20</jats:sup>C, with single neutron knockout reactions on Be/C targets, within an energy range from approximately 43 to 2100 MeV/nucleon, using the Glauber model. Incident energies do not show any obvious effect on the resulting values across this wide energy range. The extracted quenching factors are found to be strongly dependent on the proton-neutron asymmetry, which is consistent with the recent analysis of knockout reactions but is inconsistent with the systematics of transfer and quasi-free knockout reactions. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064102

Beyond-mean-field dynamical correlations for nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum *

Wei Sun; Kai-Yuan Zhang; Cong Pan; Xiao-Hua Fan; Shuang-Quan Zhang; Zhi-Pan Li

<jats:title>Abstract</jats:title> <jats:p>We extend the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) to go beyond-mean-field framework by performing a two-dimensional collective Hamiltonian. The influences of dynamical correlations on the ground-state properties are examined in different mass regions, picking Se, Nd, and Th isotopic chains as representatives. It is found that the dynamical correlation energies (DCEs) and the rotational correction energies <jats:inline-formula> <jats:tex-math><?CDATA $E_{\mathrm{rot}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> in the cranking approximation have an almost equivalent effect on the description of binding energies for most deformed nuclei, and the DCEs can provide a significant improvement for the (near) spherical nuclei close to the neutron shells and thus reduce the rms deviations of <jats:inline-formula> <jats:tex-math><?CDATA $S_{2n}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> by <jats:inline-formula> <jats:tex-math><?CDATA $\approx$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064103_M3.jpg" xlink:type="simple" /> </jats:inline-formula>17%. Furthermore, it is found that the DCEs are quite sensitive to the pairing correlations; taking <jats:inline-formula> <jats:tex-math><?CDATA $^{148}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064103_M4.jpg" xlink:type="simple" /> </jats:inline-formula>Nd as an example, a 10% enhancement of pairing strength can raise the DCE by <jats:inline-formula> <jats:tex-math><?CDATA $\approx$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064103_M5.jpg" xlink:type="simple" /> </jats:inline-formula>37%. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064103

Landau quantization and spin polarization of cold magnetized quark matter *

Zhen-Yan Lu; Jian-Feng Xu; Xin-Jian Wen; Guang-Xiong Peng; Marco Ruggieri

<jats:title>Abstract</jats:title> <jats:p>The magnetic field and density behaviors of various thermodynamic quantities of strange quark matter under compact star conditions are investigated in the framework of the thermodynamically self-consistent quasiparticle model. For individual species, a larger number density <jats:inline-formula> <jats:tex-math><?CDATA $ n_i $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064104_M1.jpg" xlink:type="simple" /> </jats:inline-formula> leads to a larger magnetic field strength threshold that aligns all particles parallel or antiparallel to the magnetic field. Accordingly, in contrast to the finite baryon density effect which reduces the spin polarization of magnetized strange quark matter, the magnetic field effect leads to an enhancement of it. We also compute the sound velocity as a function of the baryon density and find the sound velocity shows an obvious oscillation with increasing density. Except for the oscillation, the sound velocity grows with increasing density, similar to the zero-magnetic field case, and approaches the conformal limit <jats:inline-formula> <jats:tex-math><?CDATA $ V_s^2=1/3 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064104_M2.jpg" xlink:type="simple" /> </jats:inline-formula> at high densities from below. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064104

Bayesian analysis on non-resonant behavior of 12C + 12C fusion reaction at sub-barrier energies *

Tian-Peng Luo; Pei-Wei Wen; Cheng-Jian Lin; Lei Yang; Hui-Ming Jia; Feng Yang; Da-Hu Huang; Chang Chang; Ming-Hao Zhang; Yun Yang; Teng-Huan Mo; Nan-Ru Ma

<jats:title>Abstract</jats:title> <jats:p>Controversies exist among experiments and theories on the <jats:inline-formula> <jats:tex-math><?CDATA $ S^\star$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064105_M1.jpg" xlink:type="simple" /> </jats:inline-formula> factor of the astrophysical important reaction <jats:sup>12</jats:sup>C + <jats:sup>12</jats:sup>C for energies below 3 MeV. Only frequentist approaches have been used so far for data analysis, and the confidence levels or theoretical errors are not available from previous theoretical predictions. In this study, the Bayesian method is employed to provide theoretical predictions and its 1<jats:italic>σ</jats:italic> confidence level based on all the currently available experimental data for the first time. The improved coupled-channels model CCFULL-FEM implemented with the finite element method as well as the Markov chain Monte Carlo approach <jats:italic>emcee</jats:italic> are adopted to analyze the non-resonant behavior of this reaction. The posterior distribution of the Woods-Saxon potential parameters is investigated. Compared with the widely used frequentist method MIGRAD within the Minuit minimization program, the Bayesian method has a significant advantage for exploring the potential parameter space. When the existing experimental data measured down to subbarrier energies are considered, the potential parameters are constrained to a very narrow range, and the predictions of the <jats:inline-formula> <jats:tex-math><?CDATA $ S^\star$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064105_M2.jpg" xlink:type="simple" /> </jats:inline-formula> factor showed no sharp decrease in the low-energy region. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064105

Effects of a kaonic meson on the ground-state properties of nuclei *

Jing Guo; D. H. Chen; Xian-Rong Zhou; Q. B. Chen; H.-J. Schulze

<jats:title>Abstract</jats:title> <jats:p>The effects of an additional <jats:inline-formula> <jats:tex-math><?CDATA $K^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064106_M1.jpg" xlink:type="simple" /> </jats:inline-formula> meson on the ground-state properties of nuclei are investigated within an axially-deformed Skyrme-Hartree-Fock approach combined with a Skyrme-type kaon-nucleon interaction. The <jats:inline-formula> <jats:tex-math><?CDATA $K^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064106_M2.jpg" xlink:type="simple" /> </jats:inline-formula> meson increases the binding energies of all nuclei, whereas it affects deformations only for light nuclei without shell closure. The nucleon drip lines are modified due to the strongly attractive <jats:inline-formula> <jats:tex-math><?CDATA $K^-N$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064106_M3.jpg" xlink:type="simple" /> </jats:inline-formula> interaction. This is attributed to the behavior of the highest-occupied nucleon single-particle levels near the drip lines, which is analyzed in detail. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064106

Tackling the kaon structure function at EicC *

Gang Xie; Chengdong Han; Rong Wang; Xurong Chen

<jats:title>Abstract</jats:title> <jats:p>Measuring the kaon structure beyond proton and pion structures is a prominent topic in hadron physics, as it is one way to understand the nature of the Nambu-Goldstone boson of QCD and observe the interplay between the EHM and HB mechanisms for hadron mass generation. In this study, we present a simulation of the leading Λ baryon tagged deep inelastic scattering experiment at EicC (Electron-ion collider in China), which is engaged to unveil the internal structure of kaon via the Sullivan process. According to our simulation results, the suggested experiment will cover the kinematical domain of <jats:inline-formula> <jats:tex-math><?CDATA $ 0.05\lesssim x_{\rm K} \lesssim 0.85 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ Q^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M3.jpg" xlink:type="simple" /> </jats:inline-formula> up to 50 GeV <jats:inline-formula> <jats:tex-math><?CDATA $ ^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, with the acceptable statistical uncertainties. In the relatively low- <jats:inline-formula> <jats:tex-math><?CDATA $ Q^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M5.jpg" xlink:type="simple" /> </jats:inline-formula> region ( <jats:inline-formula> <jats:tex-math><?CDATA $ \gt10 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M6.jpg" xlink:type="simple" /> </jats:inline-formula> GeV <jats:inline-formula> <jats:tex-math><?CDATA $ ^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M7.jpg" xlink:type="simple" /> </jats:inline-formula>), the Monte-Carlo simulation shows a good statistical precision ( <jats:inline-formula> <jats:tex-math><?CDATA $ \gt5 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M8.jpg" xlink:type="simple" /> </jats:inline-formula>%) for the measurement of the kaon structure function <jats:inline-formula> <jats:tex-math><?CDATA $ F_2^{\rm K} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M9.jpg" xlink:type="simple" /> </jats:inline-formula>. In the high- <jats:inline-formula> <jats:tex-math><?CDATA $ Q^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M10.jpg" xlink:type="simple" /> </jats:inline-formula> region (up to 50 GeV <jats:inline-formula> <jats:tex-math><?CDATA $ ^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M11.jpg" xlink:type="simple" /> </jats:inline-formula>), the statistical uncertainty of <jats:inline-formula> <jats:tex-math><?CDATA $ F_2^{\rm K} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M12.jpg" xlink:type="simple" /> </jats:inline-formula> is also acceptable ( <jats:inline-formula> <jats:tex-math><?CDATA $ \gt10 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M13.jpg" xlink:type="simple" /> </jats:inline-formula>%) for the data at <jats:inline-formula> <jats:tex-math><?CDATA $ x_{\rm K}\gt0.8 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064107_M14.jpg" xlink:type="simple" /> </jats:inline-formula>. To perform such an experiment at an electron-ion collider, a high-performance zero-degree calorimeter is suggested. The magnitude of the background process and the assumed detector capabilities are also discussed and illustrated in the paper. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064107

The nuclear symmetry energy from relativistic Brueckner-Hartree-Fock model *

Chencan Wang; Jinniu Hu; Ying Zhang; Hong Shen

<jats:title>Abstract</jats:title> <jats:p>The microscopic mechanisms of the symmetry energy in nuclear matter are investigated in the framework of the relativistic Brueckner-Hartree-Fock (RBHF) model with a high-precision realistic nuclear potential, pvCDBonn A. The kinetic energy and potential contributions to symmetry energy are decomposed. They are explicitly expressed by the nucleon self-energies, which are obtained through projecting the <jats:italic>G</jats:italic>-matrices from the RBHF model into the terms of Lorentz covariants. The nuclear medium effects on the nucleon self-energy and nucleon-nucleon interaction in symmetry energy are discussed by comparing the results from the RBHF model and those from Hartree-Fock and relativistic Hartree-Fock models. It is found that the nucleon self-energy including the nuclear medium effect on the single-nucleon wave function provides a largely positive contribution to the symmetry energy, while the nuclear medium effect on the nucleon-nucleon interaction, i.e., the effective <jats:italic>G</jats:italic>-matrices provides a negative contribution. The tensor force plays an essential role in the symmetry energy around the density. The scalar and vector covariant amplitudes of nucleon-nucleon interaction dominate the potential component of the symmetry energy. Furthermore, the isoscalar and isovector terms in the optical potential are extracted from the RBHF model. The isoscalar part is consistent with the results from the analysis of global optical potential, while the isovector one has obvious differences at higher incident energy due to the relativistic effect. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064108

Effects of Λ hyperons on the deformations of even–even nuclei *

C. F. Chen; Q. B. Chen; Xian-Rong Zhou; Y. Y. Cheng; Ji-Wei Cui; H.-J. Schulze

<jats:title>Abstract</jats:title> <jats:p>The deformations of multi- <jats:inline-formula> <jats:tex-math><?CDATA $ {\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064109_M2.jpg" xlink:type="simple" /> </jats:inline-formula> hypernuclei corresponding to even–even core nuclei ranging from <jats:inline-formula> <jats:tex-math><?CDATA $ ^8 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064109_M3.jpg" xlink:type="simple" /> </jats:inline-formula>Be to <jats:inline-formula> <jats:tex-math><?CDATA $ ^{40} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064109_M4.jpg" xlink:type="simple" /> </jats:inline-formula>Ca with 2, 4, 6, and 8 hyperons are studied using the deformed Skyrme–Hartree–Fock approach. It is found that the deformations are reduced when adding 2 or 8 <jats:inline-formula> <jats:tex-math><?CDATA $ {\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064109_M5.jpg" xlink:type="simple" /> </jats:inline-formula> hyperons, but enhanced when adding 4 or 6 <jats:inline-formula> <jats:tex-math><?CDATA $ {\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064109_M6.jpg" xlink:type="simple" /> </jats:inline-formula> hyperons. These differences are attributed to the fact that <jats:inline-formula> <jats:tex-math><?CDATA $ {\Lambda} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064109_M7.jpg" xlink:type="simple" /> </jats:inline-formula> hyperons are filled gradually into the three deformed <jats:inline-formula> <jats:tex-math><?CDATA $ p $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064109_M8.jpg" xlink:type="simple" /> </jats:inline-formula> orbits, of which the [110]1/2 <jats:inline-formula> <jats:tex-math><?CDATA $ ^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064109_M9.jpg" xlink:type="simple" /> </jats:inline-formula> orbit is prolately deformed and the degenerate [101]1/2 <jats:inline-formula> <jats:tex-math><?CDATA $ ^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064109_M10.jpg" xlink:type="simple" /> </jats:inline-formula> and [101]3/2 <jats:inline-formula> <jats:tex-math><?CDATA $ ^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064109_M11.jpg" xlink:type="simple" /> </jats:inline-formula> orbits are oblately deformed. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 064109