Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
New behaviors of α-particle preformation factors near doubly magic 100Sn *
Jun-Gang Deng; Hong-Fei Zhang; Xiao-Dong Sun
<jats:title>Abstract</jats:title> <jats:p>The <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M1.jpg" xlink:type="simple" /> </jats:inline-formula>-particle preformation factors of nuclei above doubly magic nuclei <jats:inline-formula> <jats:tex-math><?CDATA $ ^{100} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M2.jpg" xlink:type="simple" /> </jats:inline-formula>Sn and <jats:inline-formula> <jats:tex-math><?CDATA $ ^{208} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>Pb are investigated within the generalized liquid drop model. The results show that the <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M4.jpg" xlink:type="simple" /> </jats:inline-formula>-particle preformation factors of nuclei near self-conjugate doubly magic <jats:inline-formula> <jats:tex-math><?CDATA $ ^{100} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M5.jpg" xlink:type="simple" /> </jats:inline-formula>Sn are significantly larger than those of analogous nuclei just above <jats:inline-formula> <jats:tex-math><?CDATA $ ^{208} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M6.jpg" xlink:type="simple" /> </jats:inline-formula>Pb, and they will be enhanced as the nuclei move towards the <jats:inline-formula> <jats:tex-math><?CDATA $ N = Z $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M7.jpg" xlink:type="simple" /> </jats:inline-formula> line. The proton–neutron correlation energy <jats:inline-formula> <jats:tex-math><?CDATA $ E_{p-n} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M8.jpg" xlink:type="simple" /> </jats:inline-formula> and two protons–two neutrons correlation energy <jats:inline-formula> <jats:tex-math><?CDATA $ E_{2p-2n} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M9.jpg" xlink:type="simple" /> </jats:inline-formula> of nuclei near <jats:inline-formula> <jats:tex-math><?CDATA $ ^{100} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M10.jpg" xlink:type="simple" /> </jats:inline-formula>Sn also exhibit a similar situation, indicating that the interactions between protons and neutrons occupying similar single-particle orbitals could enhance the <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M11.jpg" xlink:type="simple" /> </jats:inline-formula>-particle preformation factors and result in superallowed <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M12.jpg" xlink:type="simple" /> </jats:inline-formula> decay. This also provides evidence of the significant role of the proton–neutron interaction on <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M13.jpg" xlink:type="simple" /> </jats:inline-formula>-particle preformation. Also, the linear relationship between <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M14.jpg" xlink:type="simple" /> </jats:inline-formula>-particle preformation factors and the product of valence protons and valence neutrons for nuclei around <jats:inline-formula> <jats:tex-math><?CDATA $ ^{208} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M15.jpg" xlink:type="simple" /> </jats:inline-formula>Pb is broken in the <jats:inline-formula> <jats:tex-math><?CDATA $ ^{100} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M16.jpg" xlink:type="simple" /> </jats:inline-formula>Sn region because the <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M17.jpg" xlink:type="simple" /> </jats:inline-formula>-particle preformation factor is enhanced when a nucleus near <jats:inline-formula> <jats:tex-math><?CDATA $ ^{100} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M18.jpg" xlink:type="simple" /> </jats:inline-formula>Sn moves towards the <jats:inline-formula> <jats:tex-math><?CDATA $ N = Z $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M19.jpg" xlink:type="simple" /> </jats:inline-formula> line. Furthermore, the calculated <jats:inline-formula> <jats:tex-math><?CDATA $ \alpha $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M20.jpg" xlink:type="simple" /> </jats:inline-formula> decay half-lives fit well with the experimental data, including the recent observed self-conjugate nuclei <jats:inline-formula> <jats:tex-math><?CDATA $ ^{104} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M21.jpg" xlink:type="simple" /> </jats:inline-formula>Te and <jats:inline-formula> <jats:tex-math><?CDATA $ ^{108} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_061001_M22.jpg" xlink:type="simple" /> </jats:inline-formula>Xe [Phys. Rev. Lett. 121, 182501 (2018)]. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 061001
Confronting cosmic ray electron and positron excesses with hybrid triplet Higgs portal dark matter *
Shao-Long Chen; Amit Dutta Banik; Ze-Kun Liu
<jats:title>Abstract</jats:title> <jats:p>We perform a detailed study of scalar dark matter with triplet Higgs extensions of the Standard Model in order to explain the cosmic ray electron and positron excesses reported by AMS-02 and DAMPE. A detailed analysis of the AMS-02 positron excess reveals that for different orderings (normal, inverted, and quasi-degenerate) of neutrino mass, the hybrid triplet Higgs portal framework is more favored with respect to the single triplet Higgs portal for TeV scale dark matter. We also show that the resonant peak and continuous excess in DAMPE cosmic ray data can be well explained with the hybrid triplet Higgs portal dark matter when a dark matter sub-halo nearby is taken into account.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063101
Mixing of X and Y states from QCD sum rules analysis *
Ze-Sheng Chen; Zhuo-Ran Huang; Hong-Ying Jin; T.G. Steele; Zhu-Feng Zhang
<jats:title>Abstract</jats:title> <jats:p>We study <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{Q}Q\bar{q}q $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{Q}qQ\bar{q} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M2.jpg" xlink:type="simple" /> </jats:inline-formula> states as mixed states in QCD sum rules. By calculating the two-point correlation functions of pure states of their corresponding currents, we review the mass and coupling constant predictions of <jats:inline-formula> <jats:tex-math><?CDATA $ J^{PC} = 1^{++} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $1^{--}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ 1^{-+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> states. By calculating the two-point mixed correlation functions of <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{Q}Q\bar{q}q $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{Q}qQ\bar{q} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M7.jpg" xlink:type="simple" /> </jats:inline-formula> currents, we estimate the mass and coupling constants of the corresponding "physical state" that couples to both <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{Q}Q\bar{q}q $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M8.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{Q}qQ\bar{q} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M9.jpg" xlink:type="simple" /> </jats:inline-formula> currents. Our results suggest that for <jats:inline-formula> <jats:tex-math><?CDATA $ 1^{++} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M10.jpg" xlink:type="simple" /> </jats:inline-formula> states, the <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{Q}Q\bar{q}q $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M11.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{Q}qQ\bar{q} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M12.jpg" xlink:type="simple" /> </jats:inline-formula> components are more likely to mix, while for <jats:inline-formula> <jats:tex-math><?CDATA $ 1^{--} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M13.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ 1^{-+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M14.jpg" xlink:type="simple" /> </jats:inline-formula> states, there is less mixing between <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{Q}Q\bar{q}q $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M15.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \bar{Q}qQ\bar{q} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063102_M16.jpg" xlink:type="simple" /> </jats:inline-formula>. Our results suggest the <jats:italic>Y</jats:italic> series of states have more complicated components. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063102
Collider search of light dark matter model with dark sector decay *
Yu Cheng; Wei Liao; Qi-Shu Yan
<jats:title>Abstract</jats:title> <jats:p>We explore the possibility that the dark matter relic density is not produced by a thermal mechanism directly, but by the decay of other heavier dark-sector particles which themselves can be produced by the thermal freeze-out mechanism. Using a concrete model with light dark matter from dark sector decay, we study the collider signature of the dark sector particles associated with Higgs production processes. We find that future lepton colliders could be a better place to probe the signature of this kind of light dark matter model than hadron colliders such as LHC. Also, we find that a Higgs factory with center-of-mass energy 250 GeV has a better potential to resolve the signature of this kind of light dark matter model than a Higgs factory with center-of-mass energy 350 GeV.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063103
Quark matter properties and fluctuations of conserved charges in (2+1)-flavored quark model *
Nisha Chahal; Suneel Dutt; Arvind Kumar
<jats:title>Abstract</jats:title> <jats:p>In this study, the susceptibilities of conserved charges, baryon number, charge number, and strangeness number at zero and low values of chemical potential are presented. Taylor series expansion was used to obtain results for the three-flavor Polyakov quark meson (PQM) model and the Polyakov loop extended chiral quark mean-field (PCQMF) model. Mean-field approximation was used to study quark matter with the inclusion of the isospin chemical potential, as well as the vector interactions. The effects of isospin chemical potential and vector-interactions on phase diagrams were analyzed. A comparative analysis of the two models was completed. Fluctuations of the conserved charges were enhanced in the transition temperature regime and hence provided information about the critical end point (CEP). Susceptibilities of conserved quantities were calculated by using the Taylor series method. Enhancement of fluctuations in the transition temperature neighborhood provided a clear signature of a quantum chromodynamics (QCD) critical-point.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063104
Regularization dependence of pion generalized parton distributions *
Jin-Li Zhang; Guang-Zhen Kang; Jia-Lun Ping
<jats:title>Abstract</jats:title> <jats:p>Pion generalized parton distributions are calculated within the framework of the Nambu–Jona-Lasinio model using different regularization schemes, including the proper time regularization scheme, the three-dimensional (3D) momentum cutoff scheme, the four-dimensional momentum cutoff scheme, and the Pauli-Villars regularization scheme. Furthermore, we check the theoretical constraints of pion generalized parton distributions required by the symmetries of quantum chromodynamics in different regularization schemes. The diagrams of pion parton distribution functions are plotted, in addition, we evaluate the Mellin moments of generalized parton distributions, which are related to the electromagnetic and gravitational form factors of pion. Pion generalized parton distributions are continuous but not differential at <jats:inline-formula> <jats:tex-math><?CDATA $ x=\pm \,\xi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063105_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, when considering the effect of the contact contribution term, generalized parton distributions become not continuous at <jats:inline-formula> <jats:tex-math><?CDATA $ x=\pm \,\xi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063105_M2.jpg" xlink:type="simple" /> </jats:inline-formula> in all the four regularization schemes. Generalized parton distributions in impact parameter space are considered, the width distribution of <jats:italic>u</jats:italic> quark in the pion and the mean-squared <jats:inline-formula> <jats:tex-math><?CDATA $ \langle {\boldsymbol{b}}_{\bot}^2\rangle_{\pi}^u $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063105_M3.jpg" xlink:type="simple" /> </jats:inline-formula> are calculated. The light-front transverse-spin distributions are studied when quark polarized in the light-front-transverse <jats:inline-formula> <jats:tex-math><?CDATA $ +\,x $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063105_M4.jpg" xlink:type="simple" /> </jats:inline-formula> direction, the transverse-spin density is no longer symmetric around <jats:inline-formula> <jats:tex-math><?CDATA $ (b_x=0,b_y=0) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063105_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, the peaks shift to <jats:inline-formula> <jats:tex-math><?CDATA $ (b_x=0,b_y\gt0) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063105_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, we compare the average transverse shift <jats:inline-formula> <jats:tex-math><?CDATA $ \langle b_{\bot}^y\rangle_1^u $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063105_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \langle b_{\bot}^y\rangle_2^u $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063105_M8.jpg" xlink:type="simple" /> </jats:inline-formula> in different regularization schemes. The light-cone energy radius <jats:inline-formula> <jats:tex-math><?CDATA $ r_{E,LC} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063105_M9.jpg" xlink:type="simple" /> </jats:inline-formula> and the light-cone charge radius <jats:inline-formula> <jats:tex-math><?CDATA $ r_{c,LC} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063105_M10.jpg" xlink:type="simple" /> </jats:inline-formula> are also evaluated, we found that in the proper time regularization scheme the values of these quantities were the largest, in the 3D momentum cutoff scheme they were the smallest. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063105
Linear seesaw model with T 7 symmetry for neutrino mass and mixing
V. V. Vien
<jats:title>Abstract</jats:title> <jats:p>We propose a low-scale Standard Model extension with <jats:inline-formula> <jats:tex-math><?CDATA $T_7\times Z_4 \times Z_3\times Z_2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063106_M1.jpg" xlink:type="simple" /> </jats:inline-formula> symmetry that can successfully explain observed neutrino oscillation results within the <jats:inline-formula> <jats:tex-math><?CDATA $3 \sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063106_M2.jpg" xlink:type="simple" /> </jats:inline-formula> range. Small neutrino masses are obtained via the linear seesaw mechanism. Normal and inverted neutrino mass orderings are considered with three lepton mixing angles in their experimentally allowed <jats:inline-formula> <jats:tex-math><?CDATA $3\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063106_M3.jpg" xlink:type="simple" /> </jats:inline-formula> ranges. The model provides a suitable correlation between the solar and reactor neutrino mixing angles, which is consistent with the <jats:inline-formula> <jats:tex-math><?CDATA ${\rm{TM}}_2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063106_M4.jpg" xlink:type="simple" /> </jats:inline-formula> pattern. The prediction for the Dirac phase is <jats:inline-formula> <jats:tex-math><?CDATA $\delta_{\rm CP}\in (295.80, 330.0)^\circ$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063106_M5.jpg" xlink:type="simple" /> </jats:inline-formula> for both normal and inverted orderings, including its experimentally maximum value, while those for the two Majorana phases are <jats:inline-formula> <jats:tex-math><?CDATA $\eta_1\in (349.60, 356.60)^\circ,\, \eta_2=0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063106_M6.jpg" xlink:type="simple" /> </jats:inline-formula> for normal ordering and <jats:inline-formula> <jats:tex-math><?CDATA $\eta_1\in (3.44, 10.37)^\circ, \, \eta_2=0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063106_M7.jpg" xlink:type="simple" /> </jats:inline-formula> for inverted ordering. In addition, the predictions for the effective neutrino masses are consistent with the present experimental bounds. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063106
Doubly charged Higgs production at future ep colliders *
Xing-Hua Yang; Zhong-Juan Yang
<jats:title>Abstract</jats:title> <jats:p>The Higgs sector of the standard model can be extended by introducing an <jats:inline-formula> <jats:tex-math><?CDATA $SU(2)_L$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063107_M2.jpg" xlink:type="simple" /> </jats:inline-formula> Higgs triplet Δ to generate tiny neutrino masses in the framework of the type-II seesaw mechanism. In this paper, we study the pair production of the introduced Higgs triplet at future <jats:inline-formula> <jats:tex-math><?CDATA $ e^{-}p $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063107_M3.jpg" xlink:type="simple" /> </jats:inline-formula> colliders. The corresponding production cross sections via the vector boson fusion process at the FCC-ep and ILC <jats:inline-formula> <jats:tex-math><?CDATA $ \otimes $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063107_M4.jpg" xlink:type="simple" /> </jats:inline-formula>FCC are predicted, where the production of a pair of doubly charged Higgs is found to be dominant and then used to investigate the collider phenomenology of the Higgs triplet. Depending on the size of the Higgs triplet vacuum expectation value, the doubly charged Higgs may decay into a pair of same-sign charged leptons or a pair of same-sign <jats:italic>W</jats:italic> bosons. To explore the discovery potential of the doubly charged Higgs at future <jats:inline-formula> <jats:tex-math><?CDATA $ e^{-}p $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063107_M5.jpg" xlink:type="simple" /> </jats:inline-formula> colliders, we discuss these two decay scenarios in detail and show their detection sensitivity based on the mass of the doubly charged Higgs. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063107
Discriminating 1D new physics solutions in b → sℓℓ decays *
Shuang-Yi Li; Rui-Xiang Shi; Li-Sheng Geng
<jats:title>Abstract</jats:title> <jats:p>The recent measurements of <jats:inline-formula> <jats:tex-math><?CDATA $ R_{K^+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ R_{K_S^0} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ R_{K^{*+}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ B_s\to\mu^+\mu^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, a set of CP-averaged angular observables for the <jats:inline-formula> <jats:tex-math><?CDATA $ B^0\to K^{*0}\mu^+\mu^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M5.jpg" xlink:type="simple" /> </jats:inline-formula> decay and its isospin partner <jats:inline-formula> <jats:tex-math><?CDATA $ B^+\to K^{*+}\mu^+\mu^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M6.jpg" xlink:type="simple" /> </jats:inline-formula> by the LHCb Collaboration consistently hint at lepton universality violation in the <jats:inline-formula> <jats:tex-math><?CDATA $ b\to s\ell\ell $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M7.jpg" xlink:type="simple" /> </jats:inline-formula> transitions. In this work, we first perform global fits to the <jats:inline-formula> <jats:tex-math><?CDATA $ b\to s\ell\ell $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M8.jpg" xlink:type="simple" /> </jats:inline-formula> data and show that five one-dimensional scenarios, i.e, <jats:inline-formula> <jats:tex-math><?CDATA $ \delta C_9^{\mu} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \delta C_{10}^{\mu} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \delta C_L^{\mu} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ \delta C_9^{\mu}=C_{10}^{\mu\prime} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ \delta C_9^{\mu}=-C_9^{\mu\prime} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M13.jpg" xlink:type="simple" /> </jats:inline-formula> can best explain the so-called <jats:italic>B</jats:italic> anamolies. Furthermore, we explore how these scenarios can be distinguished from each other. For this purpose, we first study the combinations of four angular asymmetries <jats:inline-formula> <jats:tex-math><?CDATA $ A_i ~~(i=3,4,5,9) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M14.jpg" xlink:type="simple" /> </jats:inline-formula> and find that they cannot distinguish the five new physics scenarios. We then show that a newly constructed ratio <jats:inline-formula> <jats:tex-math><?CDATA $ R_{S} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M15.jpg" xlink:type="simple" /> </jats:inline-formula> can uniquely discriminate the five new physics scenarios in proper intervals of <jats:inline-formula> <jats:tex-math><?CDATA $ q^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_063108_M16.jpg" xlink:type="simple" /> </jats:inline-formula> if it can be measured with percent-level precision. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 063108
On the masses of A = 54 isospin septet and the isobaric multiplet mass equation *
Hong-Fu Li; Xing Xu; Meng Wang; Yu-Hu Zhang; Chao-Yi Fu; Wen-Jia Huang
<jats:title>Abstract</jats:title> <jats:p>Using the ground-state mass of <jats:sup>52</jats:sup>Ni and two-proton decay energy of <jats:sup>54</jats:sup>Zn, the ground-state mass excess of <jats:sup>54</jats:sup>Zn is deduced to be –6504(85) keV. This value is about 2 MeV lower than the prediction of the quadratic form of the isobaric multiplet mass equation (IMME). A cubic fit to the existing mass data of the <jats:inline-formula> <jats:tex-math><?CDATA $ A=54 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064001_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ T=3 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> isospin multiplet yields a surprisingly large <jats:italic>d</jats:italic> coefficient of IMME, i.e., <jats:inline-formula> <jats:tex-math><?CDATA $ d=18.6(27) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064001_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, being <jats:inline-formula> <jats:tex-math><?CDATA $ 6.9\sigma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> deviated from zero, and the resultant <jats:inline-formula> <jats:tex-math><?CDATA $ |b/c| $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> ratio significantly deviates from the systematics. This phenomenon is analyzed in this study, and we conclude that the breakdown of the quadratic form of IMME could be likely due to the mis-assignment of the <jats:inline-formula> <jats:tex-math><?CDATA $ T=3 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064001_M6.jpg" xlink:type="simple" /> </jats:inline-formula> isobaric analog state (IAS) in the <jats:inline-formula> <jats:tex-math><?CDATA $ T_z=1 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_6_064001_M7.jpg" xlink:type="simple" /> </jats:inline-formula> nucleus <jats:sup>54</jats:sup>Fe or extremely strong isospin mixing. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 064001