Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

On primordial black holes and secondary gravitational waves generated from inflation with solo/multi-bumpy potential *

Ruifeng Zheng; Jiaming Shi; Taotao Qiu

<jats:title>Abstract</jats:title> <jats:p>It is well known that a primordial black hole (PBH) can be generated in the inflation process of the early universe, especially when the inflation field has a number of non-trivial features that could break the slow-roll condition. In this study, we investigate a toy model of inflation with bumpy potential, which has one or several bumps. We determined that the potential with multi-bump can generate power spectra with multi-peaks in small-scale region, which can in turn predict the generation of primordial black holes in various mass ranges. We also consider the two possibilities of PBH formation by spherical and elliptical collapses. Finally, we discuss the scalar-induced gravitational waves (SIGWs) generated by linear scalar perturbations at second-order.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 045103

Exploring physical features of anisotropic quark stars in Brans-Dicke theory with a massive scalar field via embedding approach *

Abdelghani Errehymy; G. Mustafa; Youssef Khedif; Mohammed Daoud

<jats:title>Abstract</jats:title> <jats:p>The main aim of this study is to explore the existence and salient features of spherically symmetric relativistic quark stars in the background of massive Brans-Dicke gravity. The exact solutions to the modified Einstein field equations are derived for specific forms of coupling and scalar field functions using the equation of state relating to the strange quark matter that stimulates the phenomenological MIT-Bag model as a free Fermi gas of quarks. We use a well-behaved function along with the Karmarkar condition for class-one embedding as well as junction conditions to determine the unknown metric tensors. The radii of strange compact stars viz., PSR J1416-2230, PSR J1903+327, 4U 1820-30, CenX-3, and EXO1785-248, are predicted via their observed mass for different values of the massive Brans-Dicke parameters. We explore the influences of the mass of scalar field <jats:inline-formula> <jats:tex-math><?CDATA $m_{\phi}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_045104_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, coupling parameter <jats:inline-formula> <jats:tex-math><?CDATA $\omega_{\rm BD}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_045104_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, and bag constant <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{B}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_045104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> on state determinants and perform several tests on the viability and stability of the constructed stellar model. Conclusively, we find that our stellar system is physically viable and stable as it satisfies all the energy conditions and necessary stability criteria under the influence of a gravitational scalar field. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 045104

Towards the establishment of the light J P (C )=1–(+) hybrid nonet *

Lin Qiu; Qiang Zhao

<jats:title>Abstract</jats:title> <jats:p>The observation of the light hybrid candidate <jats:inline-formula> <jats:tex-math><?CDATA $ \eta_1(1855) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> by the BESIII Collaboration offers great opportunities for advancing our knowledge on exotic hadrons in terms of flavor sector. We demonstrate that this observation provides a crucial clue for establishing the <jats:inline-formula> <jats:tex-math><?CDATA $ J^{P(C)}=1^{-(+)} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> hybrid nonet. Based on the flux tube model picture, the production and decay mechanisms for the <jats:inline-formula> <jats:tex-math><?CDATA $ J^{P(C)}=1^{-(+)} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> hybrid nonet in the <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> radiative decays into two pseudoscalar mesons are investigated. In the <jats:inline-formula> <jats:tex-math><?CDATA $ I=0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> sector, we deduce that the <jats:italic>SU</jats:italic>(3) flavor octet and singlet mixing is non-negligible and apparently deviates from the flavor ideal mixing. Because only signals for one isoscalar <jats:inline-formula> <jats:tex-math><?CDATA $ \eta_1(1855) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M6.jpg" xlink:type="simple" /> </jats:inline-formula> are observed in the <jats:inline-formula> <jats:tex-math><?CDATA $ \eta\eta' $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M7.jpg" xlink:type="simple" /> </jats:inline-formula> channel, we investigate two schemes of the nonet structure in which <jats:inline-formula> <jats:tex-math><?CDATA $ \eta_1(1855) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M8.jpg" xlink:type="simple" /> </jats:inline-formula> can either be the higher or lower mass state that strongly couples to <jats:inline-formula> <jats:tex-math><?CDATA $ \eta\eta' $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M9.jpg" xlink:type="simple" /> </jats:inline-formula>. Possible channels for detecting the multiplets are suggested. In particular, a combined analysis of the hybrid production in <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi\to VH $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, where <jats:inline-formula> <jats:tex-math><?CDATA $ V $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M11.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ H $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M12.jpg" xlink:type="simple" /> </jats:inline-formula> denote the light vector mesons and <jats:inline-formula> <jats:tex-math><?CDATA $ 1^{-(+)} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_051001_M13.jpg" xlink:type="simple" /> </jats:inline-formula> hybrid states, respectively, may provide further evidence for this nonet structure and ultimately establish these mysterious exotic species in the experiment. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 051001

Linear seesaw model with a modular S 4 flavor symmetry *

Takaaki Nomura; Hiroshi Okada

<jats:title>Abstract</jats:title> <jats:p>We discuss a linear seesaw model with a field content as minimum as possible, introducing a modular <jats:inline-formula> <jats:tex-math><?CDATA $ S_4 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> using gauged <jats:inline-formula> <jats:tex-math><?CDATA $ U(1)_{B-L} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053101_M2.jpg" xlink:type="simple" /> </jats:inline-formula> symmetries. Owing to the rank two neutrino mass matrix, we obtain a vanishing neutrino mass eigenvalue, and only the normal mass hierarchy of neutrinos is favored via the modular <jats:inline-formula> <jats:tex-math><?CDATA $ S_4 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053101_M3.jpg" xlink:type="simple" /> </jats:inline-formula> symmetry. In our numerical <jats:inline-formula> <jats:tex-math><?CDATA $ \Delta \chi^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053101_M4-1.jpg" xlink:type="simple" /> </jats:inline-formula> analysis, we especially determine a relatively sharp prediction on the sum of neutrino masses to be approximately <jats:inline-formula> <jats:tex-math><?CDATA $ 60 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053101_M5.jpg" xlink:type="simple" /> </jats:inline-formula> meV, in addition to other predictions. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 053101

Lattice calculation of χ c0 → 2γ decay width *

Zuoheng Zou; Yu Meng; Chuan Liu

<jats:title>Abstract</jats:title> <jats:p>We perform a lattice QCD calculation of the <jats:inline-formula> <jats:tex-math><?CDATA $ \chi_{c0} \rightarrow 2\gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053102_M1.jpg" xlink:type="simple" /> </jats:inline-formula> decay width using a model-independent method that does not require the momentum extrapolation of corresponding off-shell form factors. The simulation is performed on ensembles of <jats:inline-formula> <jats:tex-math><?CDATA $ N_f = 2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053102_M2.jpg" xlink:type="simple" /> </jats:inline-formula> twisted mass lattice QCD gauge configurations with three different lattice spacings. After the continuum extrapolation, the decay width is obtained to be <jats:inline-formula> <jats:tex-math><?CDATA $ \Gamma_{\gamma\gamma}(\chi_{c0}) = 3.65(83)_{\mathrm{stat}}(21)_{\mathrm{lat.syst}}(66)_{\mathrm{syst}}\, \rm{keV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053102_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. Regardless of this large statistical error, our result is compatible with the experimental results within 1.3<jats:italic>σ</jats:italic>. Potential improvements of the lattice calculation in the future are also discussed. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 053102

helicity form factors and the decays *

Wei Cheng; Yi Zhang; Long Zeng; Hai-Bing Fu; Xing-Gang Wu

<jats:title>Abstract</jats:title> <jats:p>In this paper, we calculate the <jats:inline-formula> <jats:tex-math><?CDATA $ B_c\to J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M3.jpg" xlink:type="simple" /> </jats:inline-formula> helicity form factors (HFFs) up to twist-4 accuracy by using the light-cone sum rules (LCSR) approach. After extrapolating those HFFs to the physically allowable <jats:inline-formula> <jats:tex-math><?CDATA $ q^2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> region, we investigate the <jats:inline-formula> <jats:tex-math><?CDATA $ B^+_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M5.jpg" xlink:type="simple" /> </jats:inline-formula>-meson two-body decays and semi-leptonic decays <jats:inline-formula> <jats:tex-math><?CDATA $ B_c^+ \to J/\psi+(P, V, \ell^+ \nu_\ell) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, where <jats:inline-formula> <jats:tex-math><?CDATA $ P/V $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M7.jpg" xlink:type="simple" /> </jats:inline-formula> stand for light pseudoscalar and vector mesons, respectively. The branching fractions can be derived using the CKM matrix element and the <jats:inline-formula> <jats:tex-math><?CDATA $ B_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M8.jpg" xlink:type="simple" /> </jats:inline-formula> lifetime from the Particle Data Group, and we obtain <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{B}}(B_c^+ \to J/\psi \pi^+) = (0.136^{+0.002}_{-0.002}){\text{%}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{B}}(B_c^+ \to $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M10.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi K^+) = (0.010^{+0.000}_{-0.000}){\text{%}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M10-1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{B}}(B_c^+ \to J/\psi \rho^+) = (0.768^{+0.029}_{-0.033}){\text{%}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{B}}(B_c^+ \to J/\psi K^{\ast +}) = (0.043^{+0.001}_{-0.001}){\text{%}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{B}}(B_c^+ \to $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M13.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi \mu^+\nu_\mu) = (2.802^{+0.526}_{-0.675}){\text{%}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M13-1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{B}}(B_c^+ \to J/\psi \tau^+\nu_\tau) = (0.559^{+0.131}_{-0.170}){\text{%}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M14.jpg" xlink:type="simple" /> </jats:inline-formula>. We then obtain <jats:inline-formula> <jats:tex-math><?CDATA ${\cal{R}}_{\pi^+/\mu^+\nu_\mu} = 0.048^{+ 0.009}_{-0.012}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M15.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{R}}_{K^+ / \pi^+} = 0.075^{+0.005}_{-0.005} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M16.jpg" xlink:type="simple" /> </jats:inline-formula>, which agree with the LHCb measured value within <jats:inline-formula> <jats:tex-math><?CDATA $ 1\sigma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M17.jpg" xlink:type="simple" /> </jats:inline-formula>-error. We also obtain <jats:inline-formula> <jats:tex-math><?CDATA $ {\cal{R}}_{J/\psi} = 0.199^{+ 0.060}_{-0.077} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M18.jpg" xlink:type="simple" /> </jats:inline-formula>, which like other theoretical predictions, is consistent with the LHCb measured value within <jats:inline-formula> <jats:tex-math><?CDATA $ 2\sigma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M19.jpg" xlink:type="simple" /> </jats:inline-formula>-error. These imply that the HFFs under the LCSR approach are also applicable to the <jats:inline-formula> <jats:tex-math><?CDATA $ B^+_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M20.jpg" xlink:type="simple" /> </jats:inline-formula> meson two-body decays and semi-leptonic decays <jats:inline-formula> <jats:tex-math><?CDATA $ B_c^+ \to J/\psi+(P, V, \ell^+ \nu_\ell) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M21.jpg" xlink:type="simple" /> </jats:inline-formula>, and the HFFs obtained using LCSR in a new way implies that there may be new physics in the <jats:inline-formula> <jats:tex-math><?CDATA $ B_c\to J/\psi \ell^+ \nu_\ell $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053103_M22.jpg" xlink:type="simple" /> </jats:inline-formula> semi-leptonic decays. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 053103

Resonances ρ(1450)+ and ρ(1700)+ in B → DKKdecays *

Ai-Jun Ma; Wen-Fei Wang

<jats:title>Abstract</jats:title> <jats:p>The contributions for the kaon pair from the intermediate states <jats:inline-formula> <jats:tex-math><?CDATA $ \rho(1450)^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \rho(1700)^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> in the decays <jats:inline-formula> <jats:tex-math><?CDATA $ B^+ \to \bar{D}^0 K^+ \bar{K}^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ B^0 \to D^- K^+ \bar{K}^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ B_s^0 \to D_s^-K^+ \bar{K}^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M8.jpg" xlink:type="simple" /> </jats:inline-formula> are analyzed within the perturbative QCD factorization approach. The decay amplitudes for all concerned decays in this work are dominated by the factorizable Feynman diagrams with the emission of the kaon pair, and the charged <jats:italic>ρ</jats:italic> mesons should be of great importance in the <jats:inline-formula> <jats:tex-math><?CDATA $ KK $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M9.jpg" xlink:type="simple" /> </jats:inline-formula> channel of the related three-body <jats:italic>B</jats:italic> decays. Moreover, these quasi-two-body decays are CKM-favored, and the relevant branching ratios are predicted to be in the order of <jats:inline-formula> <jats:tex-math><?CDATA $ 10^{-5} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, which have the potential to be measured by experiments. It is also shown that the contributions of the subprocesses <jats:inline-formula> <jats:tex-math><?CDATA $ \rho(1450, 1700)^+ \to KK $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M11.jpg" xlink:type="simple" /> </jats:inline-formula> for the three-body <jats:italic>B</jats:italic> meson decays are considerable according to the total three-body branching fractions presented by Belle. Therefore, the decays <jats:inline-formula> <jats:tex-math><?CDATA $ B^+ \to \bar{D}^0 K^+ \bar{K}^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ B^0 \to D^- K^+ \bar{K}^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ B_s^0 \to D_s^-K^+ \bar{K}^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M14.jpg" xlink:type="simple" /> </jats:inline-formula> can be employed to study the properties of <jats:inline-formula> <jats:tex-math><?CDATA $ \rho(1450) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M15.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \rho(1700) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053104_M16.jpg" xlink:type="simple" /> </jats:inline-formula> in the LHCb and Belle-II experiments. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 053104

Photoproduction in an effective Lagrangian approach *

Neng-Chang Wei; Ai-Chao Wang; Fei Huang

<jats:title>Abstract</jats:title> <jats:p>A gauge-invariant model is constructed for the <jats:inline-formula> <jats:tex-math><?CDATA $ \gamma p \to K^+\Lambda(1690) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053105_M2.jpg" xlink:type="simple" /> </jats:inline-formula> reaction within a tree-level effective Lagrangian approach to understand the underlying production mechanisms and study the resonance contributions in this reaction. In addition to the <jats:italic>t</jats:italic>-channel <jats:italic>K</jats:italic> and <jats:inline-formula> <jats:tex-math><?CDATA $ K^\ast $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053105_M3.jpg" xlink:type="simple" /> </jats:inline-formula> exchanges, <jats:italic>s</jats:italic>-channel nucleon exchange, and interaction current, the <jats:italic>s</jats:italic>-channel nucleon resonance exchanges are included in constructing the reaction amplitudes to describe the data. It is found that the contributions from the <jats:italic>s</jats:italic>-channel <jats:inline-formula> <jats:tex-math><?CDATA $ N(2570)5/2^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053105_M4.jpg" xlink:type="simple" /> </jats:inline-formula> exchange are required to describe the most recently measured total cross-section data for <jats:inline-formula> <jats:tex-math><?CDATA $ \gamma p \to K^+\Lambda(1690) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053105_M5.jpg" xlink:type="simple" /> </jats:inline-formula> from the CLAS Collaboration. Further analysis indicates that the interaction current dominates the <jats:inline-formula> <jats:tex-math><?CDATA $ \gamma p \to K^+\Lambda(1690) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053105_M6.jpg" xlink:type="simple" /> </jats:inline-formula> reaction near the threshold as a result of gauge invariance. The <jats:italic>t</jats:italic>-channel <jats:italic>K</jats:italic> exchange contributes significantly, while the contributions from the <jats:italic>t</jats:italic>-channel <jats:inline-formula> <jats:tex-math><?CDATA $ K^\ast $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053105_M7.jpg" xlink:type="simple" /> </jats:inline-formula> exchange and <jats:italic>s</jats:italic>-channel nucleon exchange are ultimately negligible. The contributions from the <jats:italic>s</jats:italic>-channel <jats:inline-formula> <jats:tex-math><?CDATA $ N(2570)5/2^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053105_M8.jpg" xlink:type="simple" /> </jats:inline-formula> exchange are found to be responsible for the bump structure shown in the CLAS total cross-section data above the center-of-mass energy <jats:inline-formula> <jats:tex-math><?CDATA $ W \approx 2.7 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053105_M9.jpg" xlink:type="simple" /> </jats:inline-formula> GeV. The predictions of the differential cross sections for <jats:inline-formula> <jats:tex-math><?CDATA $ \gamma p \to K^+\Lambda(1690) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053105_M10.jpg" xlink:type="simple" /> </jats:inline-formula> are presented and discussed, which can provide theoretical guidance for future experiments. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 053105

Investigating the Z' gauge boson at future lepton colliders *

Xinyue Yin; Honglei Li; Yi Jin; Zhilong Han; Zongyang Lu

<jats:title>Abstract</jats:title> <jats:p> <jats:inline-formula> <jats:tex-math><?CDATA $ Z^\prime $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053106_M1.jpg" xlink:type="simple" /> </jats:inline-formula> boson as a new gauge boson has been proposed in many new physics models. The interactions of <jats:inline-formula> <jats:tex-math><?CDATA $ Z^\prime $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053106_M2.jpg" xlink:type="simple" /> </jats:inline-formula> coupling to fermions have been studied in detail at the large hadron collider. A <jats:inline-formula> <jats:tex-math><?CDATA $ Z^\prime $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053106_M3.jpg" xlink:type="simple" /> </jats:inline-formula> with the mass of a few TeV has been excluded in some special models. Future lepton colliders will focus on the studies of Higgs physics, which provide the advantage to investigate the interactions of the Higgs boson with the new gauge bosons. We investigate the <jats:inline-formula> <jats:tex-math><?CDATA $ Z^\prime ZH $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053106_M4.jpg" xlink:type="simple" /> </jats:inline-formula> interaction via the process of <jats:inline-formula> <jats:tex-math><?CDATA $ e^+e^- \to Z^\prime/Z \to ZH \to l^+l^- b \bar{b} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053106_M5.jpg" xlink:type="simple" /> </jats:inline-formula>. The angular distribution of the final leptons decaying from the <jats:italic>Z</jats:italic>-boson is related to the mixing of <jats:inline-formula> <jats:tex-math><?CDATA $ Z^\prime $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053106_M6.jpg" xlink:type="simple" /> </jats:inline-formula>-<jats:italic>Z</jats:italic> and the mass of <jats:inline-formula> <jats:tex-math><?CDATA $ Z^\prime $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053106_M7.jpg" xlink:type="simple" /> </jats:inline-formula>. The forward-backward asymmetry is proposed as an observable to investigate <jats:inline-formula> <jats:tex-math><?CDATA $ Z^\prime $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053106_M8.jpg" xlink:type="simple" /> </jats:inline-formula>-<jats:italic>Z</jats:italic> mixing. The angular distributions change significantly with some special beam polarization compared with the unpolarized condition. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 053106

High-quality grand unified theories with three generations *

Ning Chen

<jats:title>Abstract</jats:title> <jats:p>We extend the unitary groups beyond the <jats:inline-formula> <jats:tex-math><?CDATA $SU(5)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053107_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ SU(6) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053107_M2.jpg" xlink:type="simple" /> </jats:inline-formula> to determine possible grand unified theories that give rise to three-generational Standard Model fermions without simple repetitions. By demanding asymptotic free theories at short distances, we find gauge groups of <jats:inline-formula> <jats:tex-math><?CDATA $ SU(7) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053107_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $ SU(8) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053107_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $ SU(9) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053107_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, together with their anomaly-free irreducible representations, are such candidates. Two additional gauge groups of <jats:inline-formula> <jats:tex-math><?CDATA $ SU(10) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053107_M6.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ SU(11) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_5_053107_M7.jpg" xlink:type="simple" /> </jats:inline-formula> can also achieve the generational structure without asymptotic freedom. We also deduce that these models can solve the Peccei-Quinn (PQ) quality problem, which is intrinsic in the axion models, with the leading PQ-breaking operators determined from the symmetry requirement. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 053107