Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Chapter 6 Multimessenger Physics *
Zhuo Li; Giuseppe Di Sciascio; Quan-Bu Gou; Yi-Qing Guo; Hao-Ning He; Ruo-Yu Liu; Kai Wang
<jats:title>Abstract</jats:title> <jats:p>Combining observations of multi-messengers help in boosting the sensitivity of astrophysical source searches, and probe various aspects of the source physics. In this chapter we discuss how LHAASO observations of very high energy (VHE) gamma rays in combination with telescopes for the other messengers can help in solving the origins of VHE neutrinos and galactic and extragalactic cosmic rays.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 030006
Chapter 7 Solar and Heliospheric Physics and Interdisciplinary Research with LHAASO *
Huan-Yu Jia; Li Feng; D. Ruffolo; Yu. V. Stenkin; Xun-Xiu Zhou
<jats:title>Abstract</jats:title> <jats:p>In the following sub-sections, studies of solar-heliospheric effects on cosmic rays, investigating a possible link between cosmic ray flux and Earth’s climate, and detection of MeV-range <jats:italic>γ</jats:italic>-rays from thunderstorms with the data from LHAASO will be discussed; geophysical research with environmental neutrons will be introduced, and some Monte Carlo simulation results about effects of thunderstorm electric fields on LHAASO observations of cosmic rays will be given. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 030007
Nonextensive effects on QCD chiral phase transition with a chiral chemical potential
Ya-Peng Zhao; Shu-Yu Zuo; Cheng-Ming Li
<jats:title>Abstract</jats:title> <jats:p>In this paper, we study the QCD chiral phase diagram in the presence of chiral chemical potential $\mu_{5}$ based on nonextensive statistical mechanics. The feature of this new statistic is a dimensionless nonextensivity parameter $q$, which summarizes all possible effects violating the assumptions of the Boltzmann-Gibbs (BG) statistics (when $q\rightarrow1$, it returns to the BG case). Within nonextensive Polyakov-Nambu-Jona-Lasinio model, we found that as $\mu_{5}$ increases, CEP in the $T-\mu$ plane continues to $\mathrm{CEP}_{5}$ in the $T-\mu_{5}$ plane. And nonextensive effects have a significant impact on the evolution from CEP to $\mathrm{CEP}_{5}$. Generally speaking, with the increase of $q$, both CEP and $\mathrm{CEP}_{5}$ move in the direction of lower temperature $T$ and larger chemical potential $\mu$ ($\mu_{5}$). In addition, we found that chiral charge density $n_{5}$ generally increases with $T$, $\mu$, $\mu_{5}$, and $q$. Our study may provide some useful hints for lattice QCD and relativistic heavy-ion collision experiments.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. No disponible
Dark matter with chiral symmetry admixed with hadronic matterin compact stars *
Si-Na Wei; Zhao-Qing Feng
<jats:title>Abstract</jats:title> <jats:p>Using the two-fluid Tolman-Oppenheimer-Volkoff equation, the properties of dark matter (DM) admixed neutron stars (DANSs) have been investigated. In contrast to previous studies, we find that an increase in the maximum mass and a decrease in the radius of 1.4 <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> NSs can occur simultaneously in DANSs. This stems from the ability of the equation of state (EOS) for DM to be very soft at low density but very stiff at high density. It is well known that the IU-FSU and XS models are unable to produce a neutron star (NS) with a maximum mass greater than 2.0 <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043101_M2.jpg" xlink:type="simple" /> </jats:inline-formula>. However, by considering the IU-FSU and XS models for DANSs, there are interactions with DM that can produce a maximum mass greater than 2.0 <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043101_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and a radius of 1.4 <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043101_M4.jpg" xlink:type="simple" /> </jats:inline-formula> NSs below 13.7 km. When considering a DANS, the difference between DM with chiral symmetry (DMC) and DM with meson exchange (DMM) becomes obvious when the central energy density of DM is greater than that of nuclear matter (NM). In this case, the DMC model with a DM mass of 1000 MeV can still produce a maximum mass greater than 2.0 <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043101_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and a radius of a 1.4 <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043101_M6.jpg" xlink:type="simple" /> </jats:inline-formula> NS below 13.7 km. Additionally, although the maximum mass of the DANS using the DMM model is greater than 2.0 <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043101_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, the radius of a 1.4 <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043101_M8.jpg" xlink:type="simple" /> </jats:inline-formula> NS can surpass 13.7 km. In the two-fluid system, the maximum mass of a DANS can be larger than 3.0 <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043101_M9.jpg" xlink:type="simple" /> </jats:inline-formula>. Consequently, the dimensionless tidal deformability <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{CP} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043101_M10.jpg" xlink:type="simple" /> </jats:inline-formula> of a DANS with 1.4 <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043101_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, which increases with increasing maximum mass, may be larger than 800 when the radius of the 1.4 <jats:inline-formula> <jats:tex-math><?CDATA $ M_\odot $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043101_M12.jpg" xlink:type="simple" /> </jats:inline-formula> DANS is approximately 13.0 km. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 043101
Annihilation diagram contribution to charmonium masses *
Renqiang Zhang; Wei Sun; Feiyu Chen; Ying Chen; Ming Gong; Xiangyu Jiang; Zhaofeng Liu
<jats:title>Abstract</jats:title> <jats:p>In this work, we generate gauge configurations with <jats:inline-formula> <jats:tex-math><?CDATA $ N_f = 2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M1.jpg" xlink:type="simple" /> </jats:inline-formula> dynamical charm quarks on anisotropic lattices. The mass shift of <jats:inline-formula> <jats:tex-math><?CDATA $ 1S $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ 1P $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> charmonia due to the charm quark annihilation effect can be investigated directly in a manner of unitary theory. The distillation method is adopted to treat the charm quark annihilation diagrams at a very precise level. For <jats:inline-formula> <jats:tex-math><?CDATA $ 1S $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> charmonia, the charm quark annihilation effect barely changes the <jats:inline-formula> <jats:tex-math><?CDATA $ J/\psi $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> mass, but lifts the <jats:inline-formula> <jats:tex-math><?CDATA $ \eta_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M6.jpg" xlink:type="simple" /> </jats:inline-formula> mass by approximately 3–4 MeV. For <jats:inline-formula> <jats:tex-math><?CDATA $ 1P $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M7.jpg" xlink:type="simple" /> </jats:inline-formula> charmonia, this effect results in positive mass shifts of approximately 1 MeV for <jats:inline-formula> <jats:tex-math><?CDATA $ \chi_{c1} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M8.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ h_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, but decreases the <jats:inline-formula> <jats:tex-math><?CDATA $ \chi_{c2} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M10.jpg" xlink:type="simple" /> </jats:inline-formula> mass by approximately 3 MeV. We did not obtain a reliable result for the mass shift of <jats:inline-formula> <jats:tex-math><?CDATA $ \chi_{c0} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M11.jpg" xlink:type="simple" /> </jats:inline-formula>. In addition, we observed that the spin averaged mass of the spin-triplet <jats:inline-formula> <jats:tex-math><?CDATA $ 1P $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M12.jpg" xlink:type="simple" /> </jats:inline-formula> charmonia is in good agreement with <jats:inline-formula> <jats:tex-math><?CDATA $ h_c $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043102_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, as expected by the non-relativistic quark model and measured by experiments. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 043102
P-wave Ω b states: masses and pole residues *
Yong-Jiang Xu; Yong-Lu Liu; Ming-Qiu Huang
<jats:title>Abstract</jats:title> <jats:p>In this study, we consider all <jats:italic>P</jats:italic>-wave <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> states represented by interpolating currents with a derivative and calculate the corresponding masses and pole residues using the QCD sum rule method. Because of the large uncertainties in our calculation compared with the small difference in the masses of the excited <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> states observed by the LHCb collaboration, it is necessary to study other properties of the <jats:italic>P</jats:italic>-wave <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043103_M3.jpg" xlink:type="simple" /> </jats:inline-formula> states represented by the interpolating currents investigated in the present work to gain a better understanding of the four excited <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_{b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> states observed by the LHCb collaboration. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 043103
Gravitational waves from cosmic strings after a first-order phase transition *
Ruiyu Zhou; Ligong Bian
<jats:title>Abstract</jats:title> <jats:p>We study the possibility of probing high scale phase transitions that are inaccessible by LIGO. Our study shows that the stochastic gravitational-wave radiation from cosmic strings that are formed after the first-order phase transition can be detected by space-based interferometers when the phase transition temperature is <jats:inline-formula> <jats:tex-math><?CDATA $ T_n\sim {\cal{O}}(10^{8-11}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043104_M1.jpg" xlink:type="simple" /> </jats:inline-formula> GeV. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 043104
e + e − γ production at photon-photon colliders at complete electroweak NLO accuracy *
He-Yi Li; Ren-You Zhang; Wen-Gan Ma; Yi Jiang; Xiao-Zhou Li
<jats:title>Abstract</jats:title> <jats:p>We present the NLO electroweak radiative corrections to the <jats:inline-formula> <jats:tex-math><?CDATA $ e^+e^-\gamma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043105_M1.jpg" xlink:type="simple" /> </jats:inline-formula> production in <jats:italic>γγ</jats:italic> collision, which is an ideal channel for calibrating the beam luminosity of a Photon Linear Collider. We analyze the dependence of the total cross section on the beam colliding energy, and then investigate the kinematic distributions of final particles at various initial photon beam polarizations at EW NLO accuracy. The numerical results indicate that the EW relative corrections to the total cross section are non-negligible and become increasingly significant as the increase of the beam colliding energy, even can exceed –10% in the <jats:inline-formula> <jats:tex-math><?CDATA ${{J}} = 2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043105_M2.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:italic>γγ</jats:italic> collision at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{\hat{s}} = 1\; {\rm{TeV}} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043105_M3.jpg" xlink:type="simple" /> </jats:inline-formula>. Such EW corrections are very important and should be taken into consideration in precision theoretical and experimental studies at high-energy <jats:italic>γγ</jats:italic> colliders. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 043105
A multi-charged particle model with local U(1) μ-τ to explain muon g–2, flavor physics, and possible collider signature *
Nilanjana Kumar; Takaaki Nomura; Hiroshi Okada
<jats:title>Abstract</jats:title> <jats:p>We consider a model with multi-charged particles, including vector-like fermions, and a charged scalar under a local <jats:inline-formula> <jats:tex-math><?CDATA $ U(1)_{\mu - \tau} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043106_M1.jpg" xlink:type="simple" /> </jats:inline-formula> symmetry. We search for an allowed parameter region explaining muon anomalous magnetic moment (muon <jats:inline-formula> <jats:tex-math><?CDATA $ g-2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043106_M2.jpg" xlink:type="simple" /> </jats:inline-formula>) and <jats:inline-formula> <jats:tex-math><?CDATA $ b \to s \ell^+ \ell^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043106_M3.jpg" xlink:type="simple" /> </jats:inline-formula> anomalies, satisfying constraints from the lepton flavor violations, <jats:italic>Z</jats:italic> boson decays, meson anti-meson mixing, and collider experiments. Via numerical analysis, we explore the typical size of the muon <jats:inline-formula> <jats:tex-math><?CDATA $ g-2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043106_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and Wilson coefficients to explain the <jats:inline-formula> <jats:tex-math><?CDATA $ b \to s \ell^+ \ell^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043106_M5.jpg" xlink:type="simple" /> </jats:inline-formula> anomalies in our model when all other experimental constraints are satisfied. Subsequently, we discuss the collider physics of the multicharged vectorlike fermions, considering a number of benchmark points in the allowed parameter space. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 043106
Mass spectra and decay of mesons under strong external magnetic field *
Shuyun Yang; Meng Jin; Defu Hou
<jats:title>Abstract</jats:title> <jats:p>We study the mass spectra and decay process of <jats:italic>σ</jats:italic> and <jats:inline-formula> <jats:tex-math><?CDATA $ \pi_0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043107_M1.jpg" xlink:type="simple" /> </jats:inline-formula> mesons under a strong external magnetic field. To achieve this goal, we deduce the thermodynamic potential in a two-flavor, hot and magnetized Nambu–Jona-Lasinio model. We calculate the energy gap equation through the random phase approximation (RPA). Then we use the Ritus method to calculate the decay triangle diagram and self-energy in the presence of a constant magnetic field <jats:italic>B</jats:italic>. Our results indicate that the magnetic field has little influence on the mass of <jats:inline-formula> <jats:tex-math><?CDATA $ \pi_0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_4_043107_M2.jpg" xlink:type="simple" /> </jats:inline-formula> at low temperatures. However, for quarks and <jats:italic>σ</jats:italic> mesons, their mass clearly changes, which reflects the influence of magnetic catalysis (MC). The presence of a magnetic field accelerates the decay of the meson while the presence of a chemical potential will decrease the decay process. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 043107