Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Systematic study of two-proton radioactivity half-lives using the two-potential and Skyrme-Hartree-Fock approaches *

Xiao Pan; You-Tian Zou; Hong-Ming Liu; Biao He; Xiao-Hua Li; Xi-Jun Wu; Zhen Zhang

<jats:title>Abstract</jats:title> <jats:p>In this work, we systematically study the two-proton ( <jats:inline-formula> <jats:tex-math><?CDATA $2p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M1.jpg" xlink:type="simple" /> </jats:inline-formula>) radioactivity half-lives using the two-potential approach, and the nuclear potential is obtained using the Skyrme-Hartree-Fock approach and the Skyrme effective interaction of SLy8. For true <jats:inline-formula> <jats:tex-math><?CDATA $2p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M2.jpg" xlink:type="simple" /> </jats:inline-formula> radioactivity ( <jats:inline-formula> <jats:tex-math><?CDATA $Q_{2p}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M3.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ \gt,$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M4.jpg" xlink:type="simple" /> </jats:inline-formula> 0 and <jats:inline-formula> <jats:tex-math><?CDATA $Q_p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M5.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ \lt $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M6.jpg" xlink:type="simple" /> </jats:inline-formula>0, where <jats:inline-formula> <jats:tex-math><?CDATA $Q_p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $Q_{2p}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M8.jpg" xlink:type="simple" /> </jats:inline-formula> are the released energies of the one-proton and two-proton radioactivity, respectively), the standard deviation between the experimental half-lives and our theoretical calculations is 0.701. In addition, we extend this model to predict the half-lives of 15 possible <jats:inline-formula> <jats:tex-math><?CDATA $2p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M9.jpg" xlink:type="simple" /> </jats:inline-formula> radioactivity candidates with <jats:inline-formula> <jats:tex-math><?CDATA $Q_{2p}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M10.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ \gt,$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M11.jpg" xlink:type="simple" /> </jats:inline-formula> 0 obtained from the evaluated atomic mass table AME2016. The calculated results indicate a clear linear relationship between the logarithmic <jats:inline-formula> <jats:tex-math><?CDATA $2p$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M12.jpg" xlink:type="simple" /> </jats:inline-formula> radioactivity half-lives ( <jats:inline-formula> <jats:tex-math><?CDATA ${\log}_{10}T_{1/2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M13.jpg" xlink:type="simple" /> </jats:inline-formula>) and coulomb parameters [( <jats:inline-formula> <jats:tex-math><?CDATA $Z_{d}^{0.8}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M14.jpg" xlink:type="simple" /> </jats:inline-formula>+ <jats:inline-formula> <jats:tex-math><?CDATA ${l}^{\,0.25}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M15.jpg" xlink:type="simple" /> </jats:inline-formula>) <jats:inline-formula> <jats:tex-math><?CDATA $Q_{2p}^{-1/2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M16.jpg" xlink:type="simple" /> </jats:inline-formula>] considering the effect of orbital angular momentum proposed by Liu <jats:inline-formula> <jats:tex-math><?CDATA $et$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M17.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $al.$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124104_M18.jpg" xlink:type="simple" /> </jats:inline-formula> [Chin. Phys. C 45, 024108 (2021)]. For comparison, the generalized liquid drop model (GLDM), effective liquid drop model (ELDM), and Gamow-like model are also used. Our predicted results are consistent with those obtained using other relevant models. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 124104

Two-proton radioactivity of ground and excited states within a unified fission model *

Fengzhu Xing; Jianpo Cui; Yanzhao Wang; Jianzhong Gu

<jats:title>Abstract</jats:title> <jats:p>A unified fission model is extended to study two-proton radioactivity of the ground states of nuclei, and a good agreement between the experimental and calculated half-lives is found. The two-proton radioactivity half-lives of the ground states of some probable candidates are predicted within this model by inputting the released energies taken from the AME2020 table. It is shown that the predictive accuracy of the half-lives is comparable to those of other models. Then, two-proton radioactivity of the excited states of <jats:sup>14</jats:sup>O, <jats:sup>17,18</jats:sup>Ne, <jats:sup>22</jats:sup>Mg, <jats:sup>29</jats:sup>S, and <jats:sup>94</jats:sup>Ag is discussed within the unified fission model and two analytical formulas. It is found that the experimental half-lives of the excited states are reproduced better within the unified fission model. Furthermore, the two formulas are not suitable for the study of two-proton radioactivity of excited states because their physical appearance deviates from the mechanism of quantum tunneling, and the parameters involved are obtained without including experimental data from the excited states. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 124105

Theoretical study on the favored alpha-decay half-lives of deformed nuclei

M. Hassanzad; O.N. Ghodsi

<jats:title>Abstract</jats:title> <jats:p>A systematic study on the <jats:italic>α</jats:italic>-decay half-lives of nuclei in the range <jats:inline-formula> <jats:tex-math><?CDATA $93\leqslant Z \leqslant 118$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124106_M1.jpg" xlink:type="simple" /> </jats:inline-formula> is performed by employing various versions of proximity potentials. To obtain more reliable results, deformation terms are included up to hexadecapole ( <jats:inline-formula> <jats:tex-math><?CDATA $\beta_{4}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124106_M2.jpg" xlink:type="simple" /> </jats:inline-formula>) in the spherical-deformed nuclear and Coulomb interaction potentials. First, the favored <jats:italic>α</jats:italic>-decay processes in this region are categorized as even-even, odd A, and odd-odd nuclei. Second, they are grouped into two transitions: ground state to ground state and ground state to isomeric states. Owing to the comparison of their root-mean-square deviations (RMSD's), <jats:inline-formula> <jats:tex-math><?CDATA $Bass 77$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124106_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $Ngo 80$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124106_M4.jpg" xlink:type="simple" /> </jats:inline-formula> have the lowest values and better reproduce experimental data. Moreover, by considering preformation probability within the cluster formation model, the results validate the significant reduction in root-mean-square deviations obtained for different versions of proximity. Hence, the deviation between the calculated and experimental data is detracted. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 124106

Magnetic moment predictions of odd-A nuclei with the Bayesian neural network approach *

Zilong Yuan; Dachuan Tian; Jian Li; Zhongming Niu

<jats:title>Abstract</jats:title> <jats:p>The Bayesian neural network approach has been employed to improve the nuclear magnetic moment predictions of odd-<jats:italic>A</jats:italic> nuclei. The Schmidt magnetic moment obtained from the extreme single-particle shell model makes large root-mean-square (rms) deviations from data, i.e., 0.949 <jats:inline-formula> <jats:tex-math><?CDATA $ \mu_\mathrm{N} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124107_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and 1.272 <jats:inline-formula> <jats:tex-math><?CDATA $ \mu_\mathrm{N} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124107_M2.jpg" xlink:type="simple" /> </jats:inline-formula> for odd-neutron nuclei and odd-proton nuclei, respectively. By including the dependence of the nuclear spin and Schmidt magnetic moment, the machine-learning approach precisely describes the magnetic moments of odd-<jats:italic>A</jats:italic> nuclei with rms deviations of 0.036 <jats:inline-formula> <jats:tex-math><?CDATA $ \mu_\mathrm{N} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124107_M3.jpg" xlink:type="simple" /> </jats:inline-formula> for odd-neutron nuclei and 0.061 <jats:inline-formula> <jats:tex-math><?CDATA $ \mu_\mathrm{N} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124107_M4.jpg" xlink:type="simple" /> </jats:inline-formula> for odd-proton nuclei. Furthermore, the evolution of magnetic moments along isotopic chains, including the staggering and sudden jump trend, which are difficult to describe using nuclear models, have been well reproduced by the Bayesian neural network (BNN) approach. The magnetic moments of doubly closed-shell <jats:inline-formula> <jats:tex-math><?CDATA $ \pm1 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124107_M5.jpg" xlink:type="simple" /> </jats:inline-formula> nuclei, for example, isoscalar and isovector magnetic moments, have been well studied and compared with the corresponding non-relativistic and relativistic calculations. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 124107

Potential energy surfaces and fission fragment mass yields of even-even superheavy nuclei *

Pavel V. Kostryukov; Artur Dobrowolski; Bożena Nerlo-Pomorska; Michał Warda; Zhigang Xiao; Yongjing Chen; Lile Liu; Jun-Long Tian; Krzysztof Pomorski

<jats:title>Abstract</jats:title> <jats:p>Potential energy surfaces and fission barriers of superheavy nuclei are analyzed in a macroscopic-microscopic model. The Lublin-Strasbourg Drop (LSD) model is used to obtain the macroscopic part of the energy, whereas the shell and pairing energy corrections are evaluated using the Yukawa-folded potential; a standard flooding technique is utilized to determine barrier heights. A Fourier shape parametrization containing only three deformation parameters is shown to effectively reproduce the nuclear shapes of nuclei approaching fission. In addition, a non-axial degree of freedom is taken into account to better describe the structure of nuclei around the ground state and in the saddle region. In addition to the symmetric fission valley, a new highly asymmetric fission mode is predicted in most superheavy nuclei. The fission fragment mass distributions of the considered nuclei are obtained by solving 3D Langevin equations.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 124108

Probing the anisotropic distribution of baryon matter in the Universe using fast radio bursts *

Hai-Nan Lin; Yu Sang

<jats:title>Abstract</jats:title> <jats:p>We propose that fast radio bursts (FRBs) can be used as probes to constrain the possible anisotropic distribution of baryon matter in the Universe. Monte Carlo simulations show that 400 (800) FRBs are sufficient to detect the anisotropy at a 95% (99%) confidence level if the dipole amplitude has an order of magnitude of 0.01. However, more FRBs are required to tightly constrain the dipole direction. Even 1000 FRBs are insufficient to constrain the dipole direction within the angular uncertainty <jats:inline-formula> <jats:tex-math><?CDATA $\Delta\theta \lt 40^{\circ}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_125101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> at a 95% confidence level. The uncertainty on the dispersion measure of a host galaxy does not significantly affect the results. However, if the dipole amplitude is in the region of 0.001, 1000 FRBs are not enough to correctly detect the anisotropic signal. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 125101

Observational constraint on dark energy from quantum uncertainty *

Long Huang; Xiaofeng Yang; Xiang Liu

<jats:title>Abstract</jats:title> <jats:p>We explore the theoretical possibility that dark energy density is derived from massless scalar bosons in vacuum and present a physical model for dark energy. By assuming massless scalar bosons fall into the horizon boundary of the cosmos with the expansion of the universe, we can deduce the uncertainty in the relative position of scalar bosons based on the quantum fluctuation of space-time and the assumption that scalar bosons satisfy <jats:italic>P</jats:italic>-symmetry under the parity transformation <jats:inline-formula> <jats:tex-math><?CDATA $ {P}\varphi ({r}) = - \varphi ({r})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_125102_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, which can be used to estimate scalar bosons and dark energy density. Furthermore, we attempt to explain the origin of negative pressure from the increasing entropy density of the Boltzmann system and derive the equation for the state parameter, which is consistent with the specific equations of state for dark energy. Finally, we employ the SNIa Pantheon sample and Planck 2018 CMB angular power spectra to constrain the models and provide statistical results for the cosmology parameters. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 125102

Neutrino masses, leptonic flavor mixing, and muon (g−2) in the seesaw model with the gauge symmetry *

Shun Zhou

<jats:title>Abstract</jats:title> <jats:p>The latest measurements of the anomalous muon magnetic moment <jats:inline-formula> <jats:tex-math><?CDATA $a^{}_\mu \equiv (g^{}_\mu - 2)/2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_011001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> show a <jats:inline-formula> <jats:tex-math><?CDATA $4.2\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_011001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> discrepancy between the theoretical prediction of the Standard Model and the experimental observations. To account for such a discrepancy, we consider a possible extension of the type-(I+II) seesaw model for neutrino mass generation with a gauged <jats:inline-formula> <jats:tex-math><?CDATA $L^{}_\mu - L^{}_\tau$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_011001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> symmetry. By explicitly constructing an economical model with only one extra scalar singlet, we demonstrate that the gauge symmetry <jats:inline-formula> <jats:tex-math><?CDATA ${U}(1)^{}_{L^{}_\mu - L^{}_\tau}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_011001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and its spontaneous breaking are crucial not only for explaining the muon <jats:inline-formula> <jats:tex-math><?CDATA $(g - 2)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_011001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> result but also for generating the neutrino masses and leptonic flavor mixing. Various phenomenological implications and experimental constraints on the model parameters are also discussed. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 011001

First lattice QCD calculation of semileptonic decays of charmed-strange baryons Ξ c *

Qi-An Zhang; Jun Hua; Fei Huang; Renbo Li; Yuanyuan Li; Caidian Lü; Peng Sun; Wei Sun; Wei Wang; Yibo Yang

<jats:title>Abstract</jats:title> <jats:p>While the standard model is the most successful theory to describe all the interactions and constituents of elementary particle physics, it has been constantly scrutinized for over four decades. Weak decays of charm quarks can be used to measure the coupling strength between quarks in different families and serve as an ideal probe for CP violation. As the lowest charm-strange baryons with three different flavors, <jats:inline-formula> <jats:tex-math><?CDATA $\Xi_c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_011002_M1.jpg" xlink:type="simple" /> </jats:inline-formula> baryons (composed of <jats:inline-formula> <jats:tex-math><?CDATA $csu$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_011002_M2.jpg" xlink:type="simple" /> </jats:inline-formula> or <jats:inline-formula> <jats:tex-math><?CDATA $csd$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_011002_M3.jpg" xlink:type="simple" /> </jats:inline-formula>) have been extensively studied in experiments. In this study, we use state-of-the-art lattice QCD techniques to generate 2+1 clover fermion ensembles with two lattice spacings, <jats:inline-formula> <jats:tex-math><?CDATA $a=(0.108,\; 0.080\;{\rm{fm}})$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_011002_M4.jpg" xlink:type="simple" /> </jats:inline-formula>. Then, we present the first <jats:italic>ab-initio</jats:italic> lattice QCD calculation of the <jats:inline-formula> <jats:tex-math><?CDATA $\Xi_c\to \Xi$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_011002_M5.jpg" xlink:type="simple" /> </jats:inline-formula> form factors. Our theoretical results for the <jats:inline-formula> <jats:tex-math><?CDATA $\Xi_{c}\to \Xi \ell^+\nu_{\ell}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_011002_M6.jpg" xlink:type="simple" /> </jats:inline-formula> decay widths are consistent with and approximately two times more precise than the latest measurements by the ALICE and Belle collaborations. Based on the latest experimental measurements, we independently obtain the quark-mixing matrix element <jats:inline-formula> <jats:tex-math><?CDATA $|V_{cs}|$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_011002_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, which is in good agreement with results from other theoretical approaches. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 011002

Same-sign tetralepton signature in type-II seesaw at lepton colliders *

Xu-Hong Bai; Zhi-Long Han; Yi Jin; Hong-Lei Li; Zhao-Xia Meng

<jats:title>Abstract</jats:title> <jats:p>The same-sign tetralepton signature via the mixing of neutral Higgs bosons and their cascade decays to charged Higgs bosons is a unique signal in the type-II seesaw model with the mass spectrum <jats:inline-formula> <jats:tex-math><?CDATA $M_{A^0}\simeq M_{H^0}\gt M_{H^\pm}\gt M_{H^{\pm\pm}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M1.jpg" xlink:type="simple" /> </jats:inline-formula>. In this study, we investigate this signature at future lepton colliders, such as the ILC, CLIC, and MuC. Direct searches for doubly charged scalar <jats:inline-formula> <jats:tex-math><?CDATA $H^{\pm\pm}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> at the LHC have excluded <jats:inline-formula> <jats:tex-math><?CDATA $M_{H^{\pm\pm}} \lt 350(870)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> GeV in the <jats:inline-formula> <jats:tex-math><?CDATA $H^{\pm\pm}\to W^\pm W^\pm (\ell^\pm\ell^\pm)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> decay mode. Therefore, we choose <jats:inline-formula> <jats:tex-math><?CDATA $M_{A^0}=400,600,1000,1500$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M5.jpg" xlink:type="simple" /> </jats:inline-formula> GeV as our benchmark scenarios. Constrained by direct search, <jats:inline-formula> <jats:tex-math><?CDATA $H^{\pm\pm}\to W^\pm W^\pm$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M6.jpg" xlink:type="simple" /> </jats:inline-formula> is the only viable decay mode for <jats:inline-formula> <jats:tex-math><?CDATA $M_{A^0}=400$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M7.jpg" xlink:type="simple" /> </jats:inline-formula> GeV at the <jats:inline-formula> <jats:tex-math><?CDATA $\sqrt{s}=1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M8.jpg" xlink:type="simple" /> </jats:inline-formula> TeV ILC. With an integrated luminosity <jats:inline-formula> <jats:tex-math><?CDATA $\mathcal{L}=8~ \mathrm{ab}^{-1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, the promising region, with approximately 150 signal events, corresponds to a narrow band in the range of <jats:inline-formula> <jats:tex-math><?CDATA $10^{-4}~\text{GeV}\lesssim v_\Delta \lesssim10^{-2}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M10.jpg" xlink:type="simple" /> </jats:inline-formula> GeV. Meanwhile, for <jats:inline-formula> <jats:tex-math><?CDATA $M_{A^0}=600$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M11.jpg" xlink:type="simple" /> </jats:inline-formula> GeV at the <jats:inline-formula> <jats:tex-math><?CDATA $\sqrt{s}=1.5$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M12.jpg" xlink:type="simple" /> </jats:inline-formula> TeV CLIC, approximately 10 signal events can be produced with <jats:inline-formula> <jats:tex-math><?CDATA $\mathcal{L}=2.5~\text{ab}^{-1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M13.jpg" xlink:type="simple" /> </jats:inline-formula>. For heavier triplet scalars <jats:inline-formula> <jats:tex-math><?CDATA $M_{A^0}\gtrsim 870$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M14.jpg" xlink:type="simple" /> </jats:inline-formula> GeV, although the <jats:inline-formula> <jats:tex-math><?CDATA $H^{\pm\pm}\to \ell^\pm \ell^\pm$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M15.jpg" xlink:type="simple" /> </jats:inline-formula> decay mode is allowed, the cascade decays are suppressed. A maximum event number <jats:inline-formula> <jats:tex-math><?CDATA $\sim 16$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M16.jpg" xlink:type="simple" /> </jats:inline-formula> can be obtained at approximately <jats:inline-formula> <jats:tex-math><?CDATA $v_\Delta\sim4\times10^{-4}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M17.jpg" xlink:type="simple" /> </jats:inline-formula> GeV and <jats:inline-formula> <jats:tex-math><?CDATA $\lambda_4\sim0.26$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M18.jpg" xlink:type="simple" /> </jats:inline-formula> for <jats:inline-formula> <jats:tex-math><?CDATA $M_{A^0}=1000$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M19.jpg" xlink:type="simple" /> </jats:inline-formula> GeV with <jats:inline-formula> <jats:tex-math><?CDATA $\mathcal{L}=5~ \mathrm{ab}^{-1}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M20.jpg" xlink:type="simple" /> </jats:inline-formula> at the <jats:inline-formula> <jats:tex-math><?CDATA $\sqrt{s}=3$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M21.jpg" xlink:type="simple" /> </jats:inline-formula> TeV CLIC. Finally, we find that this signature is not promising for <jats:inline-formula> <jats:tex-math><?CDATA $M_{A^0}=1500$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M22.jpg" xlink:type="simple" /> </jats:inline-formula> GeV at the <jats:inline-formula> <jats:tex-math><?CDATA $\sqrt{s}=6$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M23.jpg" xlink:type="simple" /> </jats:inline-formula> TeV MuC. Based on the benchmark scenarios, we also study the observability of this signature. In the <jats:inline-formula> <jats:tex-math><?CDATA $H^{\pm\pm}\to W^\pm W^\pm(\ell^\pm\ell^\pm)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M24.jpg" xlink:type="simple" /> </jats:inline-formula> mode, one can probe <jats:inline-formula> <jats:tex-math><?CDATA $M_{A^0}\lesssim800(1160)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_46_1_012001_M25.jpg" xlink:type="simple" /> </jats:inline-formula> GeV at future lepton colliders. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 012001