Catálogo de publicaciones - revistas

Compartir en
redes sociales


Chinese Physics C

Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2008 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

1674-1137

Editor responsable

Chinese Physical Society (CPS)

País de edición

China

Fecha de publicación

Cobertura temática

Tabla de contenidos

Scalar-pseudoscalar pair production at the Large Hadron Collider at NLO+NLL accuracy in QCD *

He-Yi Li; Ren-You Zhang; Yu Zhang; Wen-Gan Ma; Ming-Ming Long; Shu-Xiang Li

<jats:title>Abstract</jats:title> <jats:p>We thoroughly investigate both transverse momentum and threshold resummation effects on scalar-pseudoscalar pair production via quark-antiquark annihilation at the <jats:inline-formula> <jats:tex-math><?CDATA $ 13 \; \text{TeV}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123102_M1.jpg" xlink:type="simple" /> </jats:inline-formula> Large Hadron Collider at QCD NLO+NLL accuracy. A factorization method is introduced to properly supplement the soft-gluon (threshold) resummation contribution from parton distribution functions to the resummed results obtained by the Collins-Soper-Sterman resummation approach. We find that the impact of the threshold-resummation improved PDFs is comparable to the resummation effect of the partonic matrix element and can even predominate in high invariant mass regions. Moreover, the loop-induced gluon-gluon fusion channel in the type-I two-Higgs-doublet model is considered in our calculations. The numerical results show that the electroweak production via quark-antiquark annihilation dominates over the gluon-initiated QCD production by <jats:inline-formula> <jats:tex-math><?CDATA $ 1 \sim 2$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123102_M2.jpg" xlink:type="simple" /> </jats:inline-formula> orders of magnitude. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 123102

A non-renormalizable B-L model with Q 4 × Z 4 × Z 2 flavor symmetry for cobimaximal neutrino mixing

V. V. Vien

<jats:title>Abstract</jats:title> <jats:p>We construct a non-renormalizable gauge <jats:inline-formula> <jats:tex-math><?CDATA $ B-L $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123103_M1.jpg" xlink:type="simple" /> </jats:inline-formula> model based on <jats:inline-formula> <jats:tex-math><?CDATA $ Q_4\times Z_4\times Z_2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> symmetry that successfully explains the cobimaximal lepton mixing scheme. Small active neutrino masses and both neutrino mass hierarchies are produced via the type-I seesaw mechanism at the tree-level. The model is predictive; hence, it reproduces the cobimaximal lepton mixing scheme, and the reactor neutrino mixing angle <jats:inline-formula> <jats:tex-math><?CDATA $ \theta_{13} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123103_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and the solar neutrino mixing angle <jats:inline-formula> <jats:tex-math><?CDATA $ \theta_{12} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> can obtain best-fit values from recent experimental data. Our model also predicts the effective neutrino mass parameters of <jats:inline-formula> <jats:tex-math><?CDATA $ m_{\beta }\in (8.80, 9.05)\, \mathrm{meV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123103_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \langle m_{ee}\rangle \in (3.65, 3.95)\, \mathrm{meV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123103_M6.jpg" xlink:type="simple" /> </jats:inline-formula> for normal ordering (NO) and <jats:inline-formula> <jats:tex-math><?CDATA $ m_{\beta }\in (49.16, 49.21)\, \mathrm{meV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123103_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \langle m_{ee}\rangle \in (48.59, 48.67)\, \mathrm{meV} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123103_M8.jpg" xlink:type="simple" /> </jats:inline-formula> for inverted ordering (IO), which are highly consistent with recent experimental constraints. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 123103

Radial excited heavy mesons *

Muyang Chen

<jats:title>Abstract</jats:title> <jats:p>In this study, the first radial excited heavy pseudoscalar and vector mesons ( <jats:inline-formula> <jats:tex-math><?CDATA $\eta_c(2S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123104_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\psi(2S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123104_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $B_c(2S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123104_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $B^*_c(2S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123104_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\eta_b(2S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123104_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $\varUpsilon(2S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123104_M6.jpg" xlink:type="simple" /> </jats:inline-formula>) are investigated using the Dyson-Schwinger equation and Bethe-Salpeter equation approach. It is shown that the effective interactions of the radial excited states are harder than those of the ground states. With the interaction well determined by fitting the masses and leptonic decay constants of <jats:inline-formula> <jats:tex-math><?CDATA $\psi(2S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123104_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\varUpsilon(2S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123104_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, the first radial excited heavy mesons could be quantitatively described in the rainbow ladder approximation. The masses and leptonic decay constants of <jats:inline-formula> <jats:tex-math><?CDATA $\eta_c(2S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123104_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $B_c(2S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123104_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $B^*_c(2S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123104_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $\eta_b(2S)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123104_M12.jpg" xlink:type="simple" /> </jats:inline-formula> are predicted. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 123104

Analysis of hidden-charm pentaquark molecular states with and without strangeness via the QCD sum rules *

Zhi-Gang Wang; Qi Xin

<jats:title>Abstract</jats:title> <jats:p>In this study, we investigate the <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}\Sigma_c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}\Xi^\prime_c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}\Sigma_c^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}\Xi_c^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M4.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}^{*}\Sigma_c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}^{*}\Xi^\prime_c$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}^{*}\Sigma_c^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $\bar{D}^{*}\Xi_c^*$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M8.jpg" xlink:type="simple" /> </jats:inline-formula> pentaquark molecular states with and without strangeness via the QCD sum rules in detail, focusing on the light flavor, <jats:inline-formula> <jats:tex-math><?CDATA $SU(3)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M9.jpg" xlink:type="simple" /> </jats:inline-formula> , breaking effects, and make predictions for new pentaquark molecular states besides assigning <jats:inline-formula> <jats:tex-math><?CDATA $P_c(4312)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $P_c(4380)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $P_c(4440)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $P_c(4457)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M13.jpg" xlink:type="simple" /> </jats:inline-formula> , and <jats:inline-formula> <jats:tex-math><?CDATA $P_{cs}(4459)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M14.jpg" xlink:type="simple" /> </jats:inline-formula> self-consistently. In the future, we can search for these pentaquark molecular states in the decay of <jats:inline-formula> <jats:tex-math><?CDATA $\Lambda_b^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M15.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\Xi_b^0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M16.jpg" xlink:type="simple" /> </jats:inline-formula> , and <jats:inline-formula> <jats:tex-math><?CDATA $\Xi_b^-$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_123105_M17.jpg" xlink:type="simple" /> </jats:inline-formula> . Furthermore, we discuss high-dimensional vacuum condensates in detail. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 123105

Analytic two-loop master integrals for tW production at hadron colliders: I *

Long-Bin Chen; Jian Wang

<jats:title>Abstract</jats:title> <jats:p>We present the analytic calculation of two-loop master integrals that are relevant for <jats:italic>tW</jats:italic> production at hadron colliders. We focus on the integral families with only one massive propagator. After selecting a canonical basis, the differential equations for the master integrals can be transformed into the <jats:italic>d</jats:italic> ln form. The boundaries are determined by simple direct integrations or regularity conditions at kinematic points without physical singularities. The analytical results in this work are expressed in terms of multiple polylogarithms, and have been checked via numerical computations. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 123106

Effect of non-uniform efficiency on higher-order cumulants in heavy-ion collisions *

Fan Si; Yifei Zhang; Xiaofeng Luo

<jats:title>Abstract</jats:title> <jats:p>We perform a systematic study on the effect of non-uniform track efficiency correction in higher-order cumulant analysis in heavy-ion collisions. Through analytical derivation, we find that the true values of cumulants can be successfully reproduced by the efficiency correction with an average of the realistic detector efficiency for particles with the same charges within each single phase space. The theoretical conclusions are supported by a toy model simulation by tuning the non-uniformity of the efficiency employed in the track-by-track efficiency correction method. The valid averaged efficiency is found to suppress the statistical uncertainties of the reproduced cumulants dramatically. Thus, usage of the averaged efficiency requires a careful study of phase space dependence. This study is important for carrying out precision measurements of higher-order cumulants in heavy-ion collision experiments at present and in future.</jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 124001

Measurements of natCd(γ, x) reaction cross sections and isomer ratio of 115m,gCd with the bremsstrahlung end-point energies of 50 and 60 MeV *

Muhammad Nadeem; Md. Shakilur Rahman; Muhammad Shahid; Guinyun Kim; Haladhara Naik; Nguyen Thi Hien

<jats:title>Abstract</jats:title> <jats:p>The flux-weighted average cross sections of <jats:sup>nat</jats:sup>Cd(γ, <jats:italic>xn</jats:italic>)<jats:sup>115g,m,111m,109,107,105,104</jats:sup>Cd and <jats:sup>nat</jats:sup>Cd(γ, <jats:italic>x</jats:italic>)<jats:sup>113g,112,111g,110m</jats:sup>Ag reactions were measured at the bremsstrahlung end-point energies of 50 and 60 MeV. The activation and off-line γ-ray spectrometric technique was carried out using the 100 MeV electron linear accelerator at the Pohang Accelerator Laboratory, Korea. The <jats:sup>nat</jats:sup>Cd(γ, <jats:italic>xn</jats:italic>) reaction cross sections as a function of photon energy were theoretically calculated using the TALYS-1.95 and the EMPIRE-3.2 Malta codes. Then, the flux-weighted average cross sections were obtained from the theoretical values of mono-energetic photons. These values were compared with the flux-weighted values from the present study and were found to be in general agreement. The measured experimental reaction cross-sections and integral yields were described for cadmium and silver isotopes in the <jats:sup>nat</jats:sup>Cd(γ, <jats:italic>xn</jats:italic>)<jats:sup>115g,m,111m,109,107,105,104</jats:sup>Cd and <jats:sup>nat</jats:sup>Cd(γ, <jats:italic>x</jats:italic>)<jats:sup>113g,112,111g,110m</jats:sup>Ag reactions. The isomeric yield ratio (IR) of <jats:sup>115g,m</jats:sup>Cd in the <jats:sup>nat</jats:sup>Cd(γ, <jats:italic>xn</jats:italic>) reaction was determined for the two bremsstrahlung end-point energies. The measured isomeric yield ratios of <jats:sup>115g,m</jats:sup>Cd in the <jats:sup>nat</jats:sup>Cd(γ, <jats:italic>xn</jats:italic>) reaction were also compared with the theoretical values of the nuclear model codes and previously published literature data of the <jats:sup>116</jats:sup>Cd(γ, <jats:italic>n</jats:italic>) and <jats:sup>116</jats:sup>Cd(<jats:italic>n</jats:italic>, 2<jats:italic>n</jats:italic>) reactions. It was found that the IR value increases with increasing projectile energy, which demonstrates the characteristic of excitation energy. However, the higher IR value of <jats:sup>115g,m</jats:sup>Cd in the <jats:sup>116</jats:sup>Cd(<jats:italic>n</jats:italic>, 2<jats:italic>n</jats:italic>) reaction compared to that in the <jats:sup>116</jats:sup>Cd(γ, <jats:italic>n</jats:italic>) reaction indicates the role of compound nuclear spin alongside excitation energy. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 124002

Survey of deep sub-barrier heavy-ion fusion hindrance phenomenon for positive and negative Q-value systems using the proximity-type potential

R. Gharaei; A. Fuji; B. Azadegan

<jats:title>Abstract</jats:title> <jats:p>A systematic survey of the accurate measurements of heavy-ion fusion cross sections at extreme sub-barrier energies is performed using the coupled-channels (CC) theory that is based on the proximity formalism. This work theoretically explores the role of the surface energy coefficient and energy-dependent nucleus-nucleus proximity potential in the mechanism of the fusion hindrance of 14 typical colliding systems with negative <jats:inline-formula> <jats:tex-math><?CDATA $Q$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124101_M1.jpg" xlink:type="simple" /> </jats:inline-formula>-values, including <jats:sup>11</jats:sup>B+<jats:sup>197</jats:sup>Au, <jats:sup>12</jats:sup>C+<jats:sup>198</jats:sup>Pt, <jats:sup>16</jats:sup>O+<jats:sup>208</jats:sup>Pb, <jats:sup>28</jats:sup>Si+<jats:sup>94</jats:sup>Mo, <jats:sup>48</jats:sup>Ca+<jats:sup>96</jats:sup>Zr, <jats:sup>28</jats:sup>Si+<jats:sup>64</jats:sup>Ni, <jats:sup>58</jats:sup>Ni+<jats:sup>58</jats:sup>Ni, <jats:sup>60</jats:sup>Ni+<jats:sup>89</jats:sup>Y, <jats:sup>12</jats:sup>C+<jats:sup>204</jats:sup>Pb, <jats:sup>36</jats:sup>S+<jats:sup>64</jats:sup>Ni, <jats:sup>36</jats:sup>S+<jats:sup>90</jats:sup>Zr, <jats:sup>40</jats:sup>Ca+<jats:sup>90</jats:sup>Zr, <jats:sup>40</jats:sup>Ca+<jats:sup>40</jats:sup>Ca, and <jats:sup>48</jats:sup>Ca+<jats:sup>48</jats:sup>Ca, as well as five typical colliding systems with positive <jats:inline-formula> <jats:tex-math><?CDATA $Q$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124101_M2.jpg" xlink:type="simple" /> </jats:inline-formula>-values, including <jats:sup>12</jats:sup>C+<jats:sup>30</jats:sup>Si, <jats:sup>24</jats:sup>Mg+<jats:sup>30</jats:sup>Si, <jats:sup>28</jats:sup>Si+<jats:sup>30</jats:sup>Si, <jats:sup>36</jats:sup>S+<jats:sup>48</jats:sup>Ca, and <jats:sup>40</jats:sup>Ca+<jats:sup>48</jats:sup>Ca. It is shown that the outcomes based on the proximity potential along with the above-mentioned physical effects achieve reasonable agreement with the experimentally observed data of the fusion cross sections <jats:inline-formula> <jats:tex-math><?CDATA $\sigma_{\rm{fus}}(E)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124101_M3.jpg" xlink:type="simple" /> </jats:inline-formula>, astrophysical <jats:inline-formula> <jats:tex-math><?CDATA $S(E)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124101_M4.jpg" xlink:type="simple" /> </jats:inline-formula> factors, and logarithmic derivatives <jats:inline-formula> <jats:tex-math><?CDATA $L(E)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124101_M5.jpg" xlink:type="simple" /> </jats:inline-formula> in the energy region far below the Coulomb barrier. A discussion is also presented on the performance of the present theoretical approach in reproducing the experimental fusion barrier distributions for different colliding systems. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 124101

Influence of different fields of mesons on the pseudospin symmetry in single-neutron resonant states *

Hua-Ming Dai; Min Shi; Shou-Wan Chen; Quan Liu

<jats:title>Abstract</jats:title> <jats:p>In the framework of the relativistic mean field theory combined with the complex momentum representation method, we elucidate the pseudospin symmetry in the single-neutron resonant states and its dependence on the <jats:inline-formula> <jats:tex-math><?CDATA $\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124102_M1.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124102_M2.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $\rho$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> meson fields. Compared with the effect of the <jats:inline-formula> <jats:tex-math><?CDATA $\rho$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124102_M4.jpg" xlink:type="simple" /> </jats:inline-formula> field, the <jats:inline-formula> <jats:tex-math><?CDATA $\sigma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124102_M5.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\omega$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_45_12_124102_M6.jpg" xlink:type="simple" /> </jats:inline-formula> fields provide the main contributions to the pseudospin energy and width splitting of the resonant pseudospin doublets. Especially, we compare quantitatively the pseudospin wave functions' splittings in resonant doublets, and investigate their dependencies on different fields of mesons, which is consistent with that of energy and width splittings. Current research is helpful to understand the mechanism and properties of pseudospin symmetry for resonant states. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 124102

Modeling complex networks of nuclear reaction data for probing their discovery processes *

Xiaohang Wang; Long Zhu; Jun Su

<jats:title>Abstract</jats:title> <jats:p>Hundreds of thousands of experimental data sets of nuclear reactions have been systematically collected, and their number is still growing rapidly. The data and their correlations compose a complex system, which underpins nuclear science and technology. We model the nuclear reaction data as weighted evolving networks for the purpose of data verification and validation. The networks are employed to study the growing cross-section data of a neutron induced threshold reaction (<jats:italic>n</jats:italic>,2<jats:italic>n</jats:italic>) and photoneutron reaction. In the networks, the nodes are the historical data, and the weights of the links are the relative deviation between the data points. It is found that the networks exhibit small-world behavior, and their discovery processes are well described by the Heaps law. What makes the networks novel is the mapping relation between the network properties and the salient features of the database: the Heaps exponent corresponds to the exploration efficiency of the specific data set, the distribution of the edge-weights corresponds to the global uncertainty of the data set, and the mean node weight corresponds to the uncertainty of the individual data point. This new perspective to understand the database will be helpful for nuclear data analysis and compilation. </jats:p>

Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.

Pp. 124103