Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
A pattern for the flavor dependent quark-antiquark interaction
Muyang Chen; Lei Chang
<jats:title>Abstract</jats:title> <jats:p>A flavor dependent kernel is constructed based on the rainbow-ladder truncation of the Dyson-Schwinger and Bethe-Salpeter equations in quantum chromodynamics. The quark-antiquark interaction is composed of a flavor dependent infrared part and a flavor independent ultraviolet part. Our model gives a successful and unified description of the light, heavy and heavy-light ground state pseudoscalar and vector mesons. Our model shows, for the first time, that the infrared enhanced quark-antiquark interaction is stronger and wider for lighter quarks.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114103
The contribution of the first forbidden transitions to the nuclear β−-decay half-life *
Ji-Lin You; Xiao-Ping Zhang; Qi-Jun Zhi; Zhong-Zhou Ren; Qing-Dong Wu
<jats:title>Abstract</jats:title> <jats:p> <jats:inline-formula> <jats:tex-math><?CDATA $ \beta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_11_114104_M1.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-life is a key quantity for nuclear structure and nucleosynthesis studies. There exist large uncertainties in the contributions of allowed and forbidden transitions to the total <jats:inline-formula> <jats:tex-math><?CDATA $ \beta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_11_114104_M2.jpg" xlink:type="simple" /> </jats:inline-formula>-decay life, which limits the resolution of the predicted <jats:inline-formula> <jats:tex-math><?CDATA $ \beta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_11_114104_M3.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-life. We systematically study the contribution of the first forbidden (FF) transitions to the <jats:inline-formula> <jats:tex-math><?CDATA $ \beta^{-} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_11_114104_M4.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-life, and quantify it with a formula based on simple physics considerations. We also propose a new formula for calculation of the <jats:inline-formula> <jats:tex-math><?CDATA $ \beta^{-} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_11_114104_M6.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-life that includes the FF contribution. It is shown that the inclusion of the contribution of FF transitions significantly improves the precision of calculations of the <jats:inline-formula> <jats:tex-math><?CDATA $ \beta^{-} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_11_114104_M7.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-life. By fitting of the RQRPA results for neutron-rich <jats:inline-formula> <jats:tex-math><?CDATA $ Z = 47 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_11_114104_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, 57 isotopes and <jats:inline-formula> <jats:tex-math><?CDATA $ N = 80 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_11_114104_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, 94 isotones, the formula for the contribution of the FF transitions gives similar results as the RQRPA calculations. However, because of limited experimental data for the branching ratios of unstable nuclei, the fit parameters are not fully constrained. Therefore, the proposed formula for the <jats:inline-formula> <jats:tex-math><?CDATA $ \beta^{-} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_11_114104_M10.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-life is more suitable for calculations of half-lives than of the FF contributions. The formula could be used to predict the <jats:inline-formula> <jats:tex-math><?CDATA $ \beta^{-} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_11_114104_M11.jpg" xlink:type="simple" /> </jats:inline-formula>-decay half-life in nuclear structure studies as well as nucleosynthesis calculations in stars. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114104
Non-relativistic expansion of single-nucleon Dirac equation: Comparison between Foldy-Wouthuysen transformation andsimilarity renormalization group *
Yixin Guo; Haozhao Liang
<jats:title>Abstract</jats:title> <jats:p>By following the Foldy-Wouthuysen (FW) transformation of the Dirac equation, we derive the exact analytic expression up to the 1/<jats:italic>M</jats:italic> <jats:sup>4</jats:sup> order for general cases in the covariant density functional theory. The results are compared with the corresponding ones derived from another novel non-relativistic expansion method, the similarity renormalization group (SRG). Based on this comparison, the origin of the difference between the results obtained with the FW transformation and the SRG method is explored. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114105
Isospin-sensitive observables as a probe of proton transition momentum in the HMT *
Fang Zhang; Hai-Bo Peng; Jiang-Tao Zhao
<jats:title>Abstract</jats:title> <jats:p>Based on the IBUU transport model, the effect of proton transition momentum on collective flows is studied in <jats:sup>40</jats:sup>Ca + <jats:sup>40</jats:sup>Ca,<jats:sup>112</jats:sup>Sn + <jats:sup>112</jats:sup>Sn, and <jats:sup>197</jats:sup>Au + <jats:sup>197</jats:sup>Au collisions at an incident beam energy of 400 MeV/<jats:italic>A</jats:italic> with impact parameter <jats:inline-formula> <jats:tex-math><?CDATA $ b = 6~{\rm fm} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_11_114106_M1.jpg" xlink:type="simple" /> </jats:inline-formula>. It is found that in a neutron rich system, the difference between neutron and proton elliptic flow is largely affected by the proton transition momentum. At beam energies around (and particularly below) the pion production threshold, the <jats:inline-formula> <jats:tex-math><?CDATA $ \pi^{-}/\pi^{+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_11_114106_M2.jpg" xlink:type="simple" /> </jats:inline-formula> ratio is greatly sensitive to proton transition momentum in asymmetric nuclear matter. This study may help us to understand the nucleon momentum distribution in nuclei, which is important for the equation of state of asymmetric nuclear matter, such as neutron stars. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114106
The charge-dependent Bonn potentials with pseudovector pion-nucleon coupling
Chencan WANG; Jinniu HU; Ying ZHANG; Hong SHEN
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114107
Multifractal spectrum and spectral behavior of calcium and titanium isotopes based on nuclear shell model
V. Razazi; S. Behnia; J. Ziaei
<jats:title>Abstract</jats:title> <jats:p>We investigate the effect of valence space nucleons on the multifractal analysis (MFA) and spectral analysis of calcium and titanium isotopes. The multifractality of wavefunctions is characterized by its associated singularity spectrum <jats:italic>f</jats:italic>(<jats:italic>α</jats:italic>) and generalized dimension <jats:italic>D<jats:sub>q</jats:sub> </jats:italic>. The random matrix theory (RMT) has been employed in the study of properties of the distribution of energy levels. In particular, we find that the number of nucleons and two-body residual interactions particularly affect the singularity and energy level spectra. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 114108
Erratum and Addendum: Observation of and study of the P-wave mesons (Chin. Phys. C, 43(3): 031001 (2019))
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 129102
QCD analysis of CMS W + charm measurements at LHC with and implications for strange PDF *
Nijat Yalkun; Sayipjamal Dulat
<jats:title>Abstract</jats:title> <jats:p>We calculate cross-sections and cross-section ratios of a charm quark production in association with a <jats:italic>W</jats:italic> gauge boson at next-to-leading order QCD using MadGraph and CT10NNLO, CT14NNLO, and MSTW2008NNLO PDFs. We compare the results with measurements from the CMS detector at the LHC at a center-of-mass energy of 7 TeV. Moreover, we calculate absolute and normalized differential cross-sections as well as differential cross-section ratios as a function of the lepton pseudorapidity from the <jats:italic>W</jats:italic> boson decay. The correlation between the CT14NNLO PDFs and predictions for <jats:inline-formula> <jats:tex-math><?CDATA $W+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M5.jpg" xlink:type="simple" /> </jats:inline-formula> charm data are studied as well. Furthermore, by employing the error PDF updating method proposed by the CTEQ-TEA group, we update CT14NNLO PDFs, and analyze the impact of CMS 7 TeV <jats:inline-formula> <jats:tex-math><?CDATA $W+$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M6.jpg" xlink:type="simple" /> </jats:inline-formula> charm production data to the original CT14NNLO PDFs. By comparison of the <jats:inline-formula> <jats:tex-math><?CDATA $g(x,Q)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M7.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $s(x,Q)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M8.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $u(x,Q)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $d(x,Q)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math><?CDATA $\bar u(x,Q)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M11.jpg" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math><?CDATA $\bar d(x,Q)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M12.jpg" xlink:type="simple" /> </jats:inline-formula> PDFs at <jats:inline-formula> <jats:tex-math><?CDATA $Q=1.3$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M13.jpg" xlink:type="simple" /> </jats:inline-formula> GeV and <jats:inline-formula> <jats:tex-math><?CDATA $Q = 100$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M14.jpg" xlink:type="simple" /> </jats:inline-formula> GeV for the CT14NNLO and CT14NNLO+Wc, we see that the error band of the <jats:inline-formula> <jats:tex-math><?CDATA $s(x,Q)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M15.jpg" xlink:type="simple" /> </jats:inline-formula> PDF is reduced in the region <jats:inline-formula> <jats:tex-math><?CDATA $x \lt 0.4$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M16.jpg" xlink:type="simple" /> </jats:inline-formula>, and the error band of <jats:inline-formula> <jats:tex-math><?CDATA $g(x,Q)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M17.jpg" xlink:type="simple" /> </jats:inline-formula> PDF is also slightly reduced at region <jats:inline-formula> <jats:tex-math><?CDATA $0.01 \lt x \lt 0.1$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123101_M18.jpg" xlink:type="simple" /> </jats:inline-formula>. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 123101
Vector hidden-bottom tetraquark candidate: Y(10750) *
Zhi-Gang Wang
<jats:title>Abstract</jats:title> <jats:p>In this article, we take the scalar diquark and antidiquark operators as the basic constituents, and construct the <jats:inline-formula> <jats:tex-math><?CDATA $C\gamma_5\otimes\stackrel{\leftrightarrow}{\partial}_\mu\otimes \gamma_5C$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123102_M1.jpg" xlink:type="simple" /> </jats:inline-formula> type tetraquark current to study <jats:italic>Y</jats:italic>(10750) with the QCD sum rules. The predicted mass <jats:inline-formula> <jats:tex-math><?CDATA $M_{Y}=10.75\pm0.10\,\rm{GeV}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123102_M2.jpg" xlink:type="simple" /> </jats:inline-formula> and width <jats:inline-formula> <jats:tex-math><?CDATA $\Gamma_Y= 33.60^{+16.64}_{-9.45}\,{\rm{MeV}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123102_M3.jpg" xlink:type="simple" /> </jats:inline-formula> support the assignment of <jats:italic>Y</jats:italic>(10750) as the diquark-antidiquark type vector hidden-bottom tetraquark state, with a relative <jats:italic>P</jats:italic>-wave between the diquark and antidiquark constituents. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 123102
Precision study of production including parton shower effects at CERN Large Hadron Collider *
Huan-Yu Bi; Ren-You Zhang; Wen-Gan Ma; Yi Jiang; Xiao-Zhou Li; Peng-Fei Duan
<jats:title>Abstract</jats:title> <jats:p>The precision study of <jats:inline-formula> <jats:tex-math><?CDATA $W^-W^+H$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M2.jpg" xlink:type="simple" /> </jats:inline-formula> production with subsequent <jats:inline-formula> <jats:tex-math><?CDATA $W^{\pm} \rightarrow l^{\pm} \overset{ _{(-)}}{\nu_{l}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $H \rightarrow b\bar{b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M4.jpg" xlink:type="simple" /> </jats:inline-formula> decays at the Large Hadron Collider (LHC) aids in the investigation of Higgs gauge couplings and the search for new physics beyond the standard model. In this study, we calculate the shower-matched next-to-leading order QCD and electroweak (EW) corrections from the <jats:inline-formula> <jats:tex-math><?CDATA $q\bar{q}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M5.jpg" xlink:type="simple" /> </jats:inline-formula> annihilation and photon-induced channels to the <jats:inline-formula> <jats:tex-math><?CDATA $W^-W^+H$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M6.jpg" xlink:type="simple" /> </jats:inline-formula> production at the <jats:inline-formula> <jats:tex-math><?CDATA $14~ {\rm TeV}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M7.jpg" xlink:type="simple" /> </jats:inline-formula> LHC. We deal with the subsequent decays of Higgs and <jats:inline-formula> <jats:tex-math><?CDATA $W^{\pm}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M8.jpg" xlink:type="simple" /> </jats:inline-formula> bosons by adopting the MADSPIN method. Both the integrated cross section and some kinematic distributions of <jats:inline-formula> <jats:tex-math><?CDATA $W^{\pm}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M9.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:italic>H</jats:italic>, and their decay products are provided. We find that the QCD correction significantly enhances the leading-order differential cross section, while the EW correction from the <jats:inline-formula> <jats:tex-math><?CDATA $q\bar{q}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M10.jpg" xlink:type="simple" /> </jats:inline-formula> annihilation channel obviously suppresses it, especially in the high energy phase-space region, due to the Sudakov effect. The <jats:inline-formula> <jats:tex-math><?CDATA $q\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M11.jpg" xlink:type="simple" /> </jats:inline-formula>- and <jats:inline-formula> <jats:tex-math><?CDATA $\gamma\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M12.jpg" xlink:type="simple" /> </jats:inline-formula>-induced relative corrections are positive and insensitive to the transverse momenta of <jats:inline-formula> <jats:tex-math><?CDATA $W^{\pm}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M13.jpg" xlink:type="simple" /> </jats:inline-formula>, <jats:italic>H,</jats:italic> and their decay products. These photon-induced corrections compensate the negative <jats:inline-formula> <jats:tex-math><?CDATA $q\bar{q}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M14.jpg" xlink:type="simple" /> </jats:inline-formula>-initiated EW correction, and become the dominant EW contribution as the increment of the <jats:inline-formula> <jats:tex-math><?CDATA $pp$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M15.jpg" xlink:type="simple" /> </jats:inline-formula> colliding energy. The parton shower (PS) effects on kinematic distributions are not negligible. The relative PS correction to the <jats:italic>b</jats:italic>-jet transverse momentum distribution can exceed 100% in the high <jats:inline-formula> <jats:tex-math><?CDATA $p_{T, b}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M16.jpg" xlink:type="simple" /> </jats:inline-formula> region. Moreover, we investigate the scale and PDF uncertainties, and find that the theoretical error of the <jats:inline-formula> <jats:tex-math><?CDATA ${\rm QCD}+{\rm EW}+q\gamma+\gamma\gamma$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_12_123103_M17.jpg" xlink:type="simple" /> </jats:inline-formula>-corrected integrated cross section mainly originates from the renormalization scale dependence of the QCD correction. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 123103