Catálogo de publicaciones - libros

Compartir en
redes sociales


Medical Image Computing and Computer-Assisted Intervention: MICCAI 2005: 8th International Conference, Palm Springs, CA, USA, October 26-29, 2005, Proceedings, Part I

James S. Duncan ; Guido Gerig (eds.)

En conferencia: 8º International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) . Palm Springs, CA, USA . October 26, 2005 - October 29, 2005

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Image Processing and Computer Vision; Pattern Recognition; Computer Graphics; Artificial Intelligence (incl. Robotics); Imaging / Radiology; Health Informatics

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-29327-9

ISBN electrónico

978-3-540-32094-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

Differential Fly-Throughs (DFT): A General Framework for Computing Flight Paths

M. Sabry Hassouna; Aly A. Farag; Robert Falk

In this paper, we propose a new variational framework based on distance transform and gradient vector flow, to compute flight paths through tubular and non-tubular structures, for virtual endoscopy. The proposed framework propagates two wave fronts of different speeds from a point source voxel, which belongs to the medial curves of the anatomical structure. The first wave traverses the 3D structure with a moderate speed that is a function of the distance field to extract its topology, while the second wave propagates with a higher speed that is a function of the magnitude of the gradient vector flow to extract the flight paths. The motion of the fronts are governed by a nonlinear partial equation, whose solution is computed efficiently using the higher accuracy fast marching level set method (HAFMM). The framework is robust, fully automatic, and computes flight paths that are centered, connected, thin, and less sensitive to boundary noise. We have validated the robustness of the proposed method both quantitatively and qualitatively against synthetic and clinical datasets.

- Imaging Systems – Visualization | Pp. 654-661

Panoramic Views for Virtual Endoscopy

Bernhard Geiger; Christophe Chefd’hotel; Sandra Sudarsky

This paper describes a panoramic projection designed to increase the surface visibility during virtual endoscopies. The proposed projection renders five faces of a cubic viewing space into the plane in a continuous fashion. Using this real-time and interactive visualization technique as a screening method for colon cancer could lead to significantly shorter evaluation time. It avoids having to fly through the colon in both directions and prevents the occlusion of potential polyps behind haustral folds.

- Imaging Systems – Visualization | Pp. 662-669

Toward Automatic Computer Aided Dental X-ray Analysis Using Level Set Method

Shuo Li; Thomas Fevens; Adam Krzyżak; Chao Jin; Song Li

A Computer Aided Dental X-rays Analysis (CADXA) framework is proposed to semi-automatically detect areas of bone loss and root decay in digital dental X-rays. In this framework, first, a new proposed competitive coupled level set method is proposed to segment the image into three pathologically meaningful regions using two coupled level set functions. Tailored for the dental clinical environment, the segmentation stage uses a trained support vector machine (SVM) classifier to provide initial contours. Then, based on the segmentation results, an analysis scheme is applied. First, the scheme builds an uncertainty map from which those areas with bone loss will be automatically detected. Secondly, the scheme employs a method based on the SVM and the average intensity profile to isolate the teeth and detect root decay. Experimental results show that our proposed framework is able to automatically detect the areas of bone loss and, when given the orientation of the teeth, it is able to automatically detect the root decay with a seriousness level marked for diagnosis.

- Computer Assisted Diagnosis | Pp. 670-678

Exploiting Temporal Information in Functional Magnetic Resonance Imaging Brain Data

Lei Zhang; Dimitris Samaras; Dardo Tomasi; Nelly Alia-Klein; Lisa Cottone; Andreana Leskovjan; Nora Volkow; Rita Goldstein

Functional Magnetic Resonance Imaging(fMRI) has enabled scientists to look into the active human brain, leading to a flood of new data, thus encouraging the development of new data analysis methods. In this paper, we contribute a comprehensive framework for spatial and temporal exploration of fMRI data, and apply it to a challenging case study: separating drug addicted subjects from healthy non-drug-using controls. To our knowledge, this is the first time that learning on fMRI data is performed explicitly on temporal information for classification in such applications. Experimental results demonstrate that, by selecting discriminative features, group classification can be successfully performed on our case study although training data are exceptionally high dimensional, sparse and noisy fMRI sequences. The classification performance can be significantly improved by incorporating temporal information into machine learning. Both statistical and neuroscientific validation of the method’s generalization ability are provided. We demonstrate that incorporation of computer science principles into functional neuroimaging clinical studies, facilitates deduction about the behavioral probes from the brain activation data, thus providing a valid tool that incorporates objective brain imaging data into clinical classification of psychopathologies and identification of genetic vulnerabilities.

- Computer Assisted Diagnosis | Pp. 679-687

Model-Based Analysis of Local Shape for Lesion Detection in CT Scans

Paulo R. S. Mendonça; Rahul Bhotika; Saad A. Sirohey; Wesley D. Turner; James V. Miller; Ricardo S. Avila

Thin-slice computer tomography provides high-resolution images that facilitate the diagnosis of early-stage lung cancer. However, the sheer size of the CT volumes introduces variability in radiological readings, driving the need for automated detection systems. The main contribution of this paper is a technique for combining geometric and intensity models with the analysis of local curvature for detecting pulmonary lesions in CT. The local shape at each voxel is represented via the principal curvatures of its associated isosurface without explicitly extracting the isosurface. The comparison of these curvatures to values derived from analytical shape models is then used to label the voxel as belonging to particular anatomical structures, e.g., nodules or vessels. The algorithm was evaluated on 242 CT exams with expert-determined ground truth. The performance of the algorithm is quantified by free-response receiver-operator characteristic curves, as well as by its potential for improvement in radiologist sensitivity.

- Computer Assisted Diagnosis | Pp. 688-695

Development of a Navigation-Based CAD System for Colon

Masahiro Oda; Takayuki Kitasaka; Yuichiro Hayashi; Kensaku Mori; Yasuhito Suenaga; Jun-ichiro Toriwaki

We propose a navigation-based computer aided diagnosis (CAD) system for the colon. When diagnosing the colon using virtual colonoscopy (VC), a physician makes a diagnosis by navigating (flying-through) the colon. However, the viewpoints and the viewing directions must be changed many times because the colon is a very long and winding organ with many folds. This is a time-consuming task for physicians. We propose a new CAD system for the colon providing virtual unfolded (VU) views, which enables physicians to observe a large area of the colonic wall at a glance. This system generates VU, VC, and CT slice views that are perfectly synchronized. Polyp candidates, which are detected automatically, are overlaid on them. We applied the system to abdominal CT images. The experimental results showed that the system effectively generates VU views for observing colon regions.

- Computer Assisted Diagnosis | Pp. 696-703

A Prediction Framework for Cardiac Resynchronization Therapy Via 4D Cardiac Motion Analysis

Heng Huang; Li Shen; Rong Zhang; Fillia Makedon; Bruce Hettleman; Justin Pearlman

We propose a novel framework to predict pacing sites in the left ventricle (LV) of a heart and its result can be used to assist pacemaker implantation and programming in cardiac resynchronization therapy (CRT), a widely adopted therapy for heart failure patients. In a traditional CRT device deployment, pacing sites are selected without quantitative prediction. That runs the risk of suboptimal benefits. In this work, the spherical harmonic (SPHARM) description is employed to model the ventricular surfaces and a novel SPHARM-based surface correspondence approach is proposed to capture the ventricular wall motion. A hierarchical agglomerative clustering technique is applied to the time series of regional wall thickness to identify candidate pacing sites. Using clinical MRI data in our experiments, we demonstrate that the proposed framework can not only effectively identify suitable pacing sites, but also distinguish patients from normal subjects perfectly to help medical diagnosis and prognosis.

- Computer Assisted Diagnosis | Pp. 704-711

Segmentation and Size Measurement of Polyps in CT Colonography

J. J. Dijkers; C. van Wijk; F. M. Vos; J. Florie; Y. C. Nio; H. W. Venema; R. Truyen; L. J. van Vliet

Virtual colonoscopy is a relatively new method for the detection of colonic polyps. Their size, which is measured from reformatted CT images, mainly determines diagnosis. We present an automatic method for measuring the polyp size. The method is based on a robust segmentation method that grows a surface patch over the entire polyp surface starting from a seed. Projection of the patch points along the polyp axis yields a 2D point set to which we fit an ellipse. The long axis of the ellipse denotes the size of the polyp. We evaluate our method by comparing the automated size measurement with those of two radiologists using scans of a colon phantom. We give data for inter-observer and intra-observer variability of radiologists and our method as well as the accuracy and precision.

- Computer Assisted Diagnosis | Pp. 712-719

Quantitative Nodule Detection in Low Dose Chest CT Scans: New Template Modeling and Evaluation for CAD System Design

Aly A. Farag; Ayman El-Baz; Georgy Gimel’farb; Mohamed Abou El-Ghar; Tarek Eldiasty

Automatic diagnosis of lung nodules for early detection of lung cancer is the goal of a number of screening studies worldwide. With the improvements in resolution and scanning time of low dose chest CT scanners, nodule detection and identification is continuously improving. In this paper we describe the latest improvements introduced by our group in automatic detection of lung nodules. We introduce a new template for nodule detection using level sets which describes various physical nodules irrespective of shape, size and distribution of gray levels. The template parameters are estimated automatically from the segmented data (after the first two steps of our CAD system for automatic nodule detection) – no a priori learning of the parameters’ density function is needed. We show quantitatively that this template modeling approach drastically reduces the number of false positives in the nodule detection (the third step of our CAD system for automatic nodule detection), thus improving the overall accuracy of CAD systems. We compare the performance of this approach with other approaches in the literature and with respect to human experts. The impact of the new template model includes: 1) flexibility with respect to nodule topology – thus nodules can be detected simultaneously by the technique; 2) automatic parameter estimation of the nodule models using the gray level information of the segmented data; and 3) the ability to provide exhaustive search for all the possible nodules in the scan without excessive processing time – this provides an enhanced accuracy of the CAD system without increase in the overall diagnosis time.

- Computer Assisted Diagnosis | Pp. 720-728

Graph Embedding to Improve Supervised Classification and Novel Class Detection: Application to Prostate Cancer

Anant Madabhushi; Jianbo Shi; Mark Rosen; John E. Tomaszeweski; Michael D. Feldman

Recently there has been a great deal of interest in algorithms for constructing low-dimensional feature-space embeddings of high dimensional data sets in order to visualize inter- and intra-class relationships. In this paper we present a novel application of graph embedding in improving the accuracy of supervised classification schemes, especially in cases where object class labels cannot be reliably ascertained. By refining the initial training set of class labels we seek to improve the prior class distributions and thus classification accuracy. We also present a novel way of visualizing the class embeddings which makes it easy to appreciate inter-class relationships and to infer the presence of new classes which were not part of the original classification. We demonstrate the utility of the method in detecting prostatic adenocarcinoma from high-resolution MRI.

- Computer Assisted Diagnosis | Pp. 729-737