Catálogo de publicaciones - libros

Compartir en
redes sociales


Medical Image Computing and Computer-Assisted Intervention: MICCAI 2005: 8th International Conference, Palm Springs, CA, USA, October 26-29, 2005, Proceedings, Part I

James S. Duncan ; Guido Gerig (eds.)

En conferencia: 8º International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) . Palm Springs, CA, USA . October 26, 2005 - October 29, 2005

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Image Processing and Computer Vision; Pattern Recognition; Computer Graphics; Artificial Intelligence (incl. Robotics); Imaging / Radiology; Health Informatics

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-29327-9

ISBN electrónico

978-3-540-32094-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

An Automated Approach to Connectivity-Based Partitioning of Brain Structures

P. A. Cook; H. Zhang; B. B. Avants; P. Yushkevich; D. C. Alexander; J. C. Gee; O. Ciccarelli; A. J. Thompson

We present an automated approach to the problem of connectivity-based partitioning of brain structures using diffusion imaging. White-matter fibres connect different areas of the brain, allowing them to interact with each other. Diffusion-tensor MRI measures the orientation of white-matter fibres , allowing us to perform connectivity-based partitioning non-invasively. Our new approach leverages atlas-based segmentation to automate anatomical labeling of the cortex. White-matter connectivities are inferred using a probabilistic tractography algorithm that models crossing pathways explicitly. The method is demonstrated with the partitioning of the corpus callosum of eight healthy subjects.

- Diffusion Tensor Image Analysis | Pp. 164-171

Deformable Registration of Diffusion Tensor MR Images with Explicit Orientation Optimization

Hui Zhang; Paul A. Yushkevich; James C. Gee

In this paper we present a novel deformable registration algorithm for diffusion tensor (DT) MR images that enables explicit analytic optimization of tensor reorientation. The optimization seeks a piecewise affine transformation that divides the image domain into uniform regions and transforms each of them affinely. The objective function captures both the image similarity and the smoothness of the transformation across region boundaries. The image similarity enables explicit orientation optimization by incorporating tensor reorientation, which is necessary for warping DT images. The objective function is formulated in a way that allows explicit implementation of analytic derivatives to drive fast and accurate optimization using the conjugate gradient method. The optimal transformation is hierarchically refined in a subdivision framework. A comparison with affine registration for inter-subject normalization of 8 subjects shows that our algorithm improves the alignment of manually segmented white matter structures (corpus callosum and cortio-spinal tracts).

- Diffusion Tensor Image Analysis | Pp. 172-179

A Hamilton-Jacobi-Bellman Approach to High Angular Resolution Diffusion Tractography

Eric Pichon; Carl-Fredrik Westin; Allen R. Tannenbaum

This paper describes a new framework for white matter tractography in high angular resolution diffusion data. A direction-dependent local cost is defined based on the diffusion data for every direction on the unit sphere. Minimum cost curves are determined by solving the Hamilton-Jacobi-Bellman using an efficient algorithm. Classical costs based on the diffusion tensor field can be seen as a special case. While the minimum cost (or equivalently the travel time of a particle moving along the curve) and the anisotropic front propagation frameworks are related, front speed is related to particle speed through a Legendre transformation which can severely impact anisotropy information for front propagation techniques. Implementation details and results on high angular diffusion data show that this method can successfully take advantage of the increased angular resolution in high b-value diffusion weighted data despite lower signal to noise ratio.

- Diffusion Tensor Image Analysis | Pp. 180-187

Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI

Mahnaz Maddah; Andrea U. J. Mewes; Steven Haker; W. Eric L. Grimson; Simon K. Warfield

A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such an atlas and use it to cluster all fiber tracts in the white matter. To build the atlas, we start with a set of labeled ROIs specified by an expert and extract the fiber tracts initiating from each ROI. Affine registration is used to project the extracted fiber tracts of each subject to the atlas, whereas their -spline representation is used to efficiently compare them to the fiber tracts in the atlas and assign cluster labels. Expert visual inspection of the result confirms that the proposed method is very promising and efficient in clustering of the known bundles of fiber tracts.

- Diffusion Tensor Image Analysis | Pp. 188-195

MR Diffusion-Based Inference of a Fiber Bundle Model from a Population of Subjects

V. El Kouby; Y. Cointepas; C. Poupon; D. Rivière; N. Golestani; J. -B. Poline; D. Le Bihan; J. -F. Mangin

This paper proposes a method to infer a high level model of the white matter organization from a population of subjects using MR diffusion imaging. This method takes as input for each subject a set of trajectories stemming from any tracking algorithm. Then the inference results from two nested clustering stages. The first clustering converts each individual set of trajectories into a set of bundles supposed to represent large white matter pathways. The second clustering matches these bundles across subjects in order to provide a list of candidates for the bundle model. The method is applied on a population of eleven subjects and leads to the inference of 17 such candidates.

- Diffusion Tensor Image Analysis | Pp. 196-204

Knowledge-Based Classification of Neuronal Fibers in Entire Brain

Yan Xia; And U. Turken; Susan L. Whitfield-Gabrieli; John D. Gabrieli

This work presents a framework driven by parcellation of brain gray matter in standard normalized space to classify the neuronal fibers obtained from diffusion tensor imaging (DTI) in entire human brain. Classification of fiber bundles into groups is an important step for the interpretation of DTI data in terms of functional correlates of white matter structures. Connections between anatomically delineated brain regions that are considered to form functional units, such as a short-term memory network, are identified by first clustering fibers based on their terminations in anatomically defined zones of gray matter according to Talairach Atlas, and then refining these groups based on geometric similarity criteria. Fiber groups identified this way can then be interpreted in terms of their functional properties using knowledge of functional neuroanatomy of individual brain regions specified in standard anatomical space, as provided by functional neuroimaging and brain lesion studies.

- Diffusion Tensor Image Analysis | Pp. 205-212

A Physical Model for DT-MRI Based Connectivity Map Computation

Erdem Yörük; Burak Acar; Roland Bammer

In this study we address the problem of extracting a robust connectivity metric for brain white matter. We defined the connectivity problem as an energy minimization task, by associating the DT-field to a physical system composed of nodes and springs, with their constants defined as a function of local structure. Using a variational approach we formulated a fast and stable map evolution, which utilizes an anisotropic kernel smoothing scheme equivalent to a diffusion PDE. The proposed method provides connectivity maps that correlate with normal anatomy on real patient data.

- Diffusion Tensor Image Analysis | Pp. 213-220

A Novel 3D Partitioned Active Shape Model for Segmentation of Brain MR Images

Zheen Zhao; Stephen R. Aylward; Eam Khwang Teoh

A 3D Partitioned Active Shape Model (PASM) is proposed in this paper to address the problems of the 3D Active Shape Models (ASM). When training sets are small. It is usually the case in 3D segmentation, 3D ASMs tend to be restrictive. This is because the allowable region spanned by relatively few eigenvectors cannot capture the full range of shape variability. The 3D PASM overcomes this limitation by using a partitioned representation of the ASM. Given a Point Distribution Model (PDM), the mean mesh is partitioned into a group of small tiles. In order to constrain deformation of tiles, the statistical priors of tiles are estimated by applying Principal Component Analysis to each tile. To avoid the inconsistency of shapes between tiles, training samples are projected as curves in one hyperspace instead of point clouds in several hyperspaces. The deformed points are then fitted into the allowable region of the model by using a curve alignment scheme. The experiments on 3D human brain MRIs show that when the numbers of the training samples are limited, the 3D PASMs significantly improve the segmentation results as compared to 3D ASMs and 3D Hierarchical ASMs.

- Image Segmentation and Analysis I | Pp. 221-228

Cross Entropy: A New Solver for Markov Random Field Modeling and Applications to Medical Image Segmentation

Jue Wu; Albert C. S. Chung

This paper introduces a novel solver, namely cross entropy (CE), into the MRF theory for medical image segmentation. The solver, which is based on the theory of rare event simulation, is general and stochastic. Unlike some popular optimization methods such as belief propagation and graph cuts, CE makes no assumption on the form of objective functions and thus can be applied to any type of MRF models. Furthermore, it achieves higher performance of finding more global optima because of its stochastic property. In addition, it is more efficient than other stochastic methods like simulated annealing. We tested the new solver in 4 series of segmentation experiments on synthetic and clinical, vascular and cerebral images. The experiments show that CE can give more accurate segmentation results.

- Image Segmentation and Analysis I | Pp. 229-237

Semi-automated Basal Ganglia Segmentation Using Large Deformation Diffeomorphic Metric Mapping

Ali Khan; Elizabeth Aylward; Patrick Barta; Michael Miller; M. Faisal Beg

This paper investigates the techniques required to produce accurate and reliable segmentations via grayscale image matching. Finding a large deformation, dense, non-rigid transformation from a template image to a target image allows us to map a template segmentation to the target image space, and therefore compute the target image segmentation and labeling. We outline a semi-automated procedure involving landmark and image intensity-based matching via the large deformation diffeomorphic mapping metric (LDDMM) algorithm. Our method is applied specifically to the segmentation of the caudate nucleus in pre- and post-symptomatic Huntington’s Disease (HD) patients. Our accuracy is compared against gold-standard manual segmentations and various automated segmentation tools through the use of several error metrics.

- Image Segmentation and Analysis I | Pp. 238-245