Catálogo de publicaciones - libros
Universal Artificial Intellegence: Sequential Decisions Based on Algorithmic Probability
Marcus Hutter
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Artificial Intelligence (incl. Robotics); Coding and Information Theory; Theory of Computation; Mathematical Logic and Formal Languages; Probability and Statistics in Computer Science
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-22139-5
ISBN electrónico
978-3-540-26877-2
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2005
Tabla de contenidos
Short Tour Through the Book
Marcus Hutter
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 1-27
Simplicity & Uncertainty
Marcus Hutter
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 29-63
Universal Sequence Prediction
Marcus Hutter
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 65-124
Agents in Known Probabilistics Environments
Marcus Hutter
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 125-140
The Universal Algorithmic Agent AIXI
Marcus Hutter
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 141-183
Important Environmental Classes
Marcus Hutter
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 185-208
Computational Aspects
Marcus Hutter
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 209-229
Discussion
Marcus Hutter
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 231-249