Catálogo de publicaciones - libros

Compartir en
redes sociales


Universal Artificial Intellegence: Sequential Decisions Based on Algorithmic Probability

Marcus Hutter

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Artificial Intelligence (incl. Robotics); Coding and Information Theory; Theory of Computation; Mathematical Logic and Formal Languages; Probability and Statistics in Computer Science

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-22139-5

ISBN electrónico

978-3-540-26877-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

Short Tour Through the Book

Marcus Hutter

Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.

Pp. 1-27

Simplicity & Uncertainty

Marcus Hutter

Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.

Pp. 29-63

Universal Sequence Prediction

Marcus Hutter

Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.

Pp. 65-124

Agents in Known Probabilistics Environments

Marcus Hutter

Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.

Pp. 125-140

The Universal Algorithmic Agent AIXI

Marcus Hutter

Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.

Pp. 141-183

Important Environmental Classes

Marcus Hutter

Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.

Pp. 185-208

Computational Aspects

Marcus Hutter

Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.

Pp. 209-229

Discussion

Marcus Hutter

Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.

Pp. 231-249