Catálogo de publicaciones - libros
Phenomenology of Life from the Animal Soul to the Human Mind: Book II The Human Soul in the Creative Transformation of the Mind
Anna-Teresa Tymieniecka (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-5181-4
ISBN electrónico
978-1-4020-5182-1
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer 2007
Cobertura temática
Tabla de contenidos
Phenomenological Hyletics: The Animal, The Human, The Divine
Angela Ales Bello
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Spheres of the Human Soul | Pp. 3-10
Passivity and Fundamental Life’s Experience in Michel Henry’s Thought
Stella Zita de Azevedo
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Spheres of the Human Soul | Pp. 11-32
Alterity, Art, and the Language of the Soul
Brian Grassom
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Spheres of the Human Soul | Pp. 33-42
Ontopoiesis and Spiritual Emergence: Bridging Tymieniecka’s Phenomenology of Life and Transpersonal Psychology
Olga Louchakova
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Spheres of the Human Soul | Pp. 43-68
The Theory of the Passions in the Sermons of Antônio Vieira S.J. (1608–1697): A Phenomenological Reading
Márcio Luis Fernandes
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Spheres of the Human Soul | Pp. 69-85
Phenomenology: The Return to the Living Soul
Olena Shkubulyani
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Spheres of the Human Soul | Pp. 87-101
The Transpersonal Psycho-Phenomenology of Self & Soul: Meditators and Multiples speak
Amy Louise Miller
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Spheres of the Human Soul | Pp. 103-122
Science and the Human Phenomenon: Markings From a Cosmic Orphan
Leo Zonneveld
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Science as the Human Phenomenon | Pp. 125-136
Consciousness in the Perspective of Evolution
Ignacy S. Fiut
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Science as the Human Phenomenon | Pp. 137-149
The Constitution of Biological Objects of Inquiry from the Viewpoint of Hermeneutic Phenomenology
Dimitri Ginev
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Science as the Human Phenomenon | Pp. 151-164