Catálogo de publicaciones - libros
Phenomenology of Life from the Animal Soul to the Human Mind: Book II The Human Soul in the Creative Transformation of the Mind
Anna-Teresa Tymieniecka (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-5181-4
ISBN electrónico
978-1-4020-5182-1
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer 2007
Cobertura temática
Tabla de contenidos
“To Communicate with a Gnat”: Experience and Communication Within the Context of Life-World
Ella Buceniece
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- The Role of Human Empathy in Communication | Pp. 361-370
Albert Camus: The Awareness of Extraneousness
Maria Mercede Ligozzi
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- The Role of Human Empathy in Communication | Pp. 371-378
Descartes, Hume, Kant and Diderot: The Interconnectedness of the Self and Nature
Oliver W. Holmes
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- The Human Self | Pp. 381-417
To dive back in the flux of life: William James’s critique of intellectualism
Velga Vevere
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- The Human Self | Pp. 419-433
The Social Construction of the Self: Contribution of Social Phenomenology
Natalia Smirnova
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- The Human Self | Pp. 435-449
The Category of the (Non-)Temporal ≪now≫ In Philosophy of the ‘Late’ Husserl
Cezary J. Olbromski
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- The Human Self | Pp. 451-458
Ingmar Bergman’s Projected Self: From W. A. Mozart’s Die Zauberflöte to Vargtimmen
Ellen J. Burns
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- The Human Self | Pp. 459-468
On the Interface Between Minds and Concepts
Semiha Akinci
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Mind, Language, World | Pp. 471-483
Mind and Ontology. Ingarden’s Phenomenology and Mahayana Philosophy as Opposed Ways of Approach to Reality
Wieslaw Kurpiewski
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Mind, Language, World | Pp. 485-508
Deconstruction of the Logocenter of all Grounds Constructed by Language Habits Language-Game the Surroundings of which is Everywhere, the Center of which is Nowhere
Erkut Sezgidot;n
Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, and adhesion molecule expression. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the bioavailability of NO in the vascular compartment. Under normoxic conditions the erythrocytic hemoglobin scavenges NO and produces a vasopressor effect that is limited by diffusional barriers along the endothelium and in the unstirred layer around the erythrocyte. In hemolytic diseases, intravascular hemolysis releases hemoglobin from the red blood cell into plasma (decompartmentalizes the hemoglobin), which is then able to scavenge endothelial derived NO 600-fold faster than erythrocytic hemoglobin, thereby dysregulating NO homoestasis. In addition to releasing plasma hemoglobin, the red cell contains arginase which when released into plasma further dysregulates arginine metabolism. These data support the existence of a novel mechanism of human disease, hemolysis associated endothelial dysfunction, that potentially participates in the vasculopathy of iatrogenic and hereditary hemolytic conditions. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. Two mechanisms have been proposed to explain this principle: 1) Oxygen linked allosteric delivery of S-nitrosothiols from S-nitrosated hemoglobin (SNO-Hb), and 2) a nitrite reductase activity of deoxygenated hemoglobin that reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. The later newly described role of hemoglobin as a nitrite reductase is discussed in the context of hypoxic vasodilation, blood flow regulation and oxygen sensing.
- Mind, Language, World | Pp. 509-522