Catálogo de publicaciones - libros

Compartir en
redes sociales


Beginning ASP.NET 2.0 in C# 2005: From Novice to Professional

Matthew MacDonald

2.

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Software Engineering/Programming and Operating Systems

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-59059-572-5

ISBN electrónico

978-1-4302-0121-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Apress 2006

Tabla de contenidos

Introducing the .NET Framework

Matthew MacDonald

In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.

Part 1 - Introducing .NET | Pp. 3-21

Learning the C# Language

Matthew MacDonald

In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.

Part 1 - Introducing .NET | Pp. 23-57

Types, Objects, and Namespaces

Matthew MacDonald

In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.

Part 1 - Introducing .NET | Pp. 59-90

Introducing Visual Studio 2005

Matthew MacDonald

In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.

Part 1 - Introducing .NET | Pp. 91-121

Web Form Fundamentals

Matthew MacDonald

In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.

Part 2 - Developing ASP.NET Applications | Pp. 125-174

Web Controls

Matthew MacDonald

In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.

Part 2 - Developing ASP.NET Applications | Pp. 175-217

Tracing, Logging, and Error Handling

Matthew MacDonald

In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.

Part 2 - Developing ASP.NET Applications | Pp. 219-266

Validation and Rich Controls

Matthew MacDonald

In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.

Part 2 - Developing ASP.NET Applications | Pp. 267-316

State Management

Matthew MacDonald

In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.

Part 2 - Developing ASP.NET Applications | Pp. 317-358

Master Pages and Themes

Matthew MacDonald

In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.

Part 2 - Developing ASP.NET Applications | Pp. 359-387