Catálogo de publicaciones - libros
Beginning ASP.NET 2.0 in C# 2005: From Novice to Professional
Matthew MacDonald
2.
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Software Engineering/Programming and Operating Systems
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-59059-572-5
ISBN electrónico
978-1-4302-0121-2
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Apress 2006
Cobertura temática
Tabla de contenidos
Website Navigation
Matthew MacDonald
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part 2 - Developing ASP.NET Applications | Pp. 389-425
Deploying ASP.NET Applications
Matthew MacDonald
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part 2 - Developing ASP.NET Applications | Pp. 427-468
ADO.NET Fundamentals
Matthew MacDonald
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part 3 - Working with Data | Pp. 471-538
Data Binding
Matthew MacDonald
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part 3 - Working with Data | Pp. 539-579
The Data Controls
Matthew MacDonald
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part 3 - Working with Data | Pp. 581-623
Files and Streams
Matthew MacDonald
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part 3 - Working with Data | Pp. 625-654
XML
Matthew MacDonald
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part 3 - Working with Data | Pp. 655-703
Security Fundamentals
Matthew MacDonald
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part 4 - Website Security | Pp. 707-738
Membership
Matthew MacDonald
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part 4 - Website Security | Pp. 739-780
Profiles
Matthew MacDonald
In nonlinear electromagnetic field computations, one is not only faced with large jumps of material coefficients across material interfaces but also with high variation in these coefficients even inside homogeneous materials due to the nonlinearity. The radiation condition can conveniently be taken into account by a coupled boundary integral and domain integral variational formulation. The coupled finite and boundary element discretization leads to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton methods where the Jacobi systems arising in every step of the Newton method are solved by a special preconditioned finite and boundary element tearing and interconnecting solver. The numerical experiments show that the preconditioner proposed in the paper can handle large jumps in the coefficients across the material interfaces as well as high variation in these coef- ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner subdomains touch the unbounded exterior subdomain.
Part 4 - Website Security | Pp. 781-809