Catálogo de publicaciones - libros

Compartir en
redes sociales


Charting a New Course: Natural Language Processing and Information Retrieval: Essays in Honour of Karen Jones / Spärck

John I. Tait (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-3343-8

ISBN electrónico

978-1-4020-3467-1

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2005

Tabla de contenidos

A Retrospective View of Synonymy and Semantic Classification

Yorick A. Wilks; John I. Tait

This paper proposes an approach to representation and analysis of information systems with fuzzy attributes, which combines the variable precision fuzzy rough set (VPFRS) model with the fuzzy flow graph method. An idea of parameterized approximation of crisp and fuzzy sets is presented. A single -approximation, which is based on the notion of fuzzy rough inclusion function, can be used to express the crisp approximations in the rough set and variable precision rough set (VPRS) model. A unified form of the -approximation is particularly important for defining a consistent VPFRS model. The introduced fuzzy flow graph method enables alternative description of decision tables with fuzzy attributes. The generalized VPFRS model and fuzzy flow graphs, taken together, can be applied to determining a system of fuzzy decision rules from process data.

Pp. 1-11

On the Early History of Evaluation in IR

Stephen Robertson

This paper proposes an approach to representation and analysis of information systems with fuzzy attributes, which combines the variable precision fuzzy rough set (VPFRS) model with the fuzzy flow graph method. An idea of parameterized approximation of crisp and fuzzy sets is presented. A single -approximation, which is based on the notion of fuzzy rough inclusion function, can be used to express the crisp approximations in the rough set and variable precision rough set (VPRS) model. A unified form of the -approximation is particularly important for defining a consistent VPFRS model. The introduced fuzzy flow graph method enables alternative description of decision tables with fuzzy attributes. The generalized VPFRS model and fuzzy flow graphs, taken together, can be applied to determining a system of fuzzy decision rules from process data.

Pp. 13-22

The Emergence of Probabilistic Accounts of Information Retrieval

C.J. Van Rijsbergen

This paper proposes an approach to representation and analysis of information systems with fuzzy attributes, which combines the variable precision fuzzy rough set (VPFRS) model with the fuzzy flow graph method. An idea of parameterized approximation of crisp and fuzzy sets is presented. A single -approximation, which is based on the notion of fuzzy rough inclusion function, can be used to express the crisp approximations in the rough set and variable precision rough set (VPRS) model. A unified form of the -approximation is particularly important for defining a consistent VPFRS model. The introduced fuzzy flow graph method enables alternative description of decision tables with fuzzy attributes. The generalized VPFRS model and fuzzy flow graphs, taken together, can be applied to determining a system of fuzzy decision rules from process data.

Pp. 23-38

Lovins Revisited

Martin F. Porter

This paper proposes an approach to representation and analysis of information systems with fuzzy attributes, which combines the variable precision fuzzy rough set (VPFRS) model with the fuzzy flow graph method. An idea of parameterized approximation of crisp and fuzzy sets is presented. A single -approximation, which is based on the notion of fuzzy rough inclusion function, can be used to express the crisp approximations in the rough set and variable precision rough set (VPRS) model. A unified form of the -approximation is particularly important for defining a consistent VPFRS model. The introduced fuzzy flow graph method enables alternative description of decision tables with fuzzy attributes. The generalized VPFRS model and fuzzy flow graphs, taken together, can be applied to determining a system of fuzzy decision rules from process data.

Pp. 39-68

The History of IDF and Its Influences on IR and Other Fields

Donna Harman

This paper proposes an approach to representation and analysis of information systems with fuzzy attributes, which combines the variable precision fuzzy rough set (VPFRS) model with the fuzzy flow graph method. An idea of parameterized approximation of crisp and fuzzy sets is presented. A single -approximation, which is based on the notion of fuzzy rough inclusion function, can be used to express the crisp approximations in the rough set and variable precision rough set (VPRS) model. A unified form of the -approximation is particularly important for defining a consistent VPFRS model. The introduced fuzzy flow graph method enables alternative description of decision tables with fuzzy attributes. The generalized VPFRS model and fuzzy flow graphs, taken together, can be applied to determining a system of fuzzy decision rules from process data.

Pp. 69-79

Beyond English Text: Multilingual and Multimedia Information Retrieval

Gareth J. F. Jones

This paper proposes an approach to representation and analysis of information systems with fuzzy attributes, which combines the variable precision fuzzy rough set (VPFRS) model with the fuzzy flow graph method. An idea of parameterized approximation of crisp and fuzzy sets is presented. A single -approximation, which is based on the notion of fuzzy rough inclusion function, can be used to express the crisp approximations in the rough set and variable precision rough set (VPRS) model. A unified form of the -approximation is particularly important for defining a consistent VPFRS model. The introduced fuzzy flow graph method enables alternative description of decision tables with fuzzy attributes. The generalized VPFRS model and fuzzy flow graphs, taken together, can be applied to determining a system of fuzzy decision rules from process data.

Pp. 81-97

Karen Spärck Jones and Summarization

Mark T. Maybury

This paper proposes an approach to representation and analysis of information systems with fuzzy attributes, which combines the variable precision fuzzy rough set (VPFRS) model with the fuzzy flow graph method. An idea of parameterized approximation of crisp and fuzzy sets is presented. A single -approximation, which is based on the notion of fuzzy rough inclusion function, can be used to express the crisp approximations in the rough set and variable precision rough set (VPRS) model. A unified form of the -approximation is particularly important for defining a consistent VPFRS model. The introduced fuzzy flow graph method enables alternative description of decision tables with fuzzy attributes. The generalized VPFRS model and fuzzy flow graphs, taken together, can be applied to determining a system of fuzzy decision rules from process data.

Pp. 99-103

Question Answering

Arthur W.S. Cater

This paper proposes an approach to representation and analysis of information systems with fuzzy attributes, which combines the variable precision fuzzy rough set (VPFRS) model with the fuzzy flow graph method. An idea of parameterized approximation of crisp and fuzzy sets is presented. A single -approximation, which is based on the notion of fuzzy rough inclusion function, can be used to express the crisp approximations in the rough set and variable precision rough set (VPRS) model. A unified form of the -approximation is particularly important for defining a consistent VPFRS model. The introduced fuzzy flow graph method enables alternative description of decision tables with fuzzy attributes. The generalized VPFRS model and fuzzy flow graphs, taken together, can be applied to determining a system of fuzzy decision rules from process data.

Pp. 105-128

Noun Compounds Revisited

A. Copestake; E.J. Briscoe

This paper proposes an approach to representation and analysis of information systems with fuzzy attributes, which combines the variable precision fuzzy rough set (VPFRS) model with the fuzzy flow graph method. An idea of parameterized approximation of crisp and fuzzy sets is presented. A single -approximation, which is based on the notion of fuzzy rough inclusion function, can be used to express the crisp approximations in the rough set and variable precision rough set (VPRS) model. A unified form of the -approximation is particularly important for defining a consistent VPFRS model. The introduced fuzzy flow graph method enables alternative description of decision tables with fuzzy attributes. The generalized VPFRS model and fuzzy flow graphs, taken together, can be applied to determining a system of fuzzy decision rules from process data.

Pp. 129-154

Lexical Decomposition: For and Against

Stephen G. Pulman

This paper proposes an approach to representation and analysis of information systems with fuzzy attributes, which combines the variable precision fuzzy rough set (VPFRS) model with the fuzzy flow graph method. An idea of parameterized approximation of crisp and fuzzy sets is presented. A single -approximation, which is based on the notion of fuzzy rough inclusion function, can be used to express the crisp approximations in the rough set and variable precision rough set (VPRS) model. A unified form of the -approximation is particularly important for defining a consistent VPFRS model. The introduced fuzzy flow graph method enables alternative description of decision tables with fuzzy attributes. The generalized VPFRS model and fuzzy flow graphs, taken together, can be applied to determining a system of fuzzy decision rules from process data.

Pp. 155-173