Catálogo de publicaciones - libros
Biochemistry and Molecular Biology of Antimicrobial Drug Action
T. J. Franklin G. A. Snow
Sixth edition.
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-22554-8
ISBN electrónico
978-0-387-27566-6
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science+Business Media, Inc. 2005
Cobertura temática
Tabla de contenidos
The development of antimicrobial agents, past, present and future
T. J. Franklin; G. A. Snow
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 1-15
Vulnerable shields—the cell walls of bacteria and fungi
T. J. Franklin; G. A. Snow
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 17-45
Antimicrobial agents and cell membranes
T. J. Franklin; G. A. Snow
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 47-64
Inhibitors of nucleic acid biosynthesis
T. J. Franklin; G. A. Snow
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 65-83
Inhibitors of protein biosynthesis
T. J. Franklin; G. A. Snow
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 85-105
Antimicrobial drugs with other modes of action
T. J. Franklin; G. A. Snow
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 107-120
Attack and defense: drug transport across cell walls and membranes
T. J. Franklin; G. A. Snow
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 121-134
The genetic basis of resistance to antimicrobial drugs
T. J. Franklin; G. A. Snow
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 135-148
Biochemical mechanisms of resistance to antimicrobial drugs
T. J. Franklin; G. A. Snow
Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.
Pp. 149-174