Catálogo de publicaciones - libros

Compartir en
redes sociales


Biochemistry and Molecular Biology of Antimicrobial Drug Action

T. J. Franklin G. A. Snow

Sixth edition.

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-22554-8

ISBN electrónico

978-0-387-27566-6

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media, Inc. 2005

Tabla de contenidos

The development of antimicrobial agents, past, present and future

T. J. Franklin; G. A. Snow

Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.

Pp. 1-15

Vulnerable shields—the cell walls of bacteria and fungi

T. J. Franklin; G. A. Snow

Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.

Pp. 17-45

Antimicrobial agents and cell membranes

T. J. Franklin; G. A. Snow

Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.

Pp. 47-64

Inhibitors of nucleic acid biosynthesis

T. J. Franklin; G. A. Snow

Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.

Pp. 65-83

Inhibitors of protein biosynthesis

T. J. Franklin; G. A. Snow

Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.

Pp. 85-105

Antimicrobial drugs with other modes of action

T. J. Franklin; G. A. Snow

Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.

Pp. 107-120

Attack and defense: drug transport across cell walls and membranes

T. J. Franklin; G. A. Snow

Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.

Pp. 121-134

The genetic basis of resistance to antimicrobial drugs

T. J. Franklin; G. A. Snow

Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.

Pp. 135-148

Biochemical mechanisms of resistance to antimicrobial drugs

T. J. Franklin; G. A. Snow

Vector autoregressive (VAR) models are capable of capturing the dynamic structure of many time series variables. Impulse response functions are typically used to investigate the relationships between the variables included in such models. In this context the relevant impulses or innovations or shocks to be traced out in an impulse response analysis have to be specified by imposing appropriate identifying restrictions. Taking into account the cointegration structure of the variables offers interesting possibilities for imposing identifying restrictions. Therefore VAR models which explicitly take into account the cointegration structure of the variables, so-called vector error correction models, are considered. Specification, estimation and validation of reduced form vector error correction models is briefly outlined and imposing structural short- and long-run restrictions within these models is discussed.

Pp. 149-174