Catálogo de publicaciones - libros

Compartir en
redes sociales


.NET 2.0 for Delphi Programmers

Jon Shemitz;

Disponibilidad

Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Tabla de contenidos

Managed Code

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 1 - Common Language Runtime | Pp. 3-16

The Object Model

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 1 - Common Language Runtime | Pp. 17-58

Garbage Collection

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 1 - Common Language Runtime | Pp. 59-79

JIT and CIL

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 1 - Common Language Runtime | Pp. 81-103

C# Primitive Types

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 2 - C# and Delphi | Pp. 107-124

C# Control Structures

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 2 - C# and Delphi | Pp. 125-137

C# Objects

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 2 - C# and Delphi | Pp. 139-177

C# Interfaces and Delegates

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 2 - C# and Delphi | Pp. 179-199

C# Topics

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 2 - C# and Delphi | Pp. 201-220

Delphi for .NET

Hallvard Vassbotn

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 2 - C# and Delphi | Pp. 221-253

Strings and Files

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 3 - The Framework Class Library | Pp. 257-304

Collections

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 3 - The Framework Class Library | Pp. 305-328

Reflection

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 3 - The Framework Class Library | Pp. 329-352

Serialization and Remoting

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 3 - The Framework Class Library | Pp. 353-372

WinForms Basics

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 3 - The Framework Class Library | Pp. 373-389

Graphics

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 3 - The Framework Class Library | Pp. 391-411

Threads and Synchronization

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 3 - The Framework Class Library | Pp. 413-438

XML

Jon Shemitz

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded data is robust against those content-preserving manipulations, such as rotation, uniformly scaling and translation, as well as mantissa truncation of vertex coordinate to a certain degree, but sensitive to malicious manipulations. Therefore, it can be used for authentication and content annotation of polygonal meshes. Compared with the previous work, the capacity of the proposed method is relatively high, tending to 1 bit/vertex. Besides to define the embedding primitive over a neighborhood so as to achieve resistance to substitution attacks, the security is also improved by making it hard to estimate the quantization step from the modified distances. A secret key is used to order the process of mesh traversal so that it is even harder to construct a counterfeit mesh with the same watermark. The numerical results show the efficacy of the proposed method.

Part 3 - The Framework Class Library | Pp. 439-454

Información

Tipo: libros

ISBN impreso

978-1-59059-386-8

ISBN electrónico

978-1-4302-0174-8

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación